簡易檢索 / 詳目顯示

研究生: 張振田
Chang, Jenn-Tyang
論文名稱: 糖尿病對肺結核病患臨床表現及治療結果的影響:臨床和機轉研究
Influence of Diabetes on Manifestations and Treatment Outcome of Pulmonary Tuberculosis Patients: Clinical and Mechanism Investigation
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 64
中文關鍵詞: 糖尿病肺結核
外文關鍵詞: diabetes, pulmonary tuberculosis
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   結核分枝桿菌(M. tuberculosis)感染目前仍是造成人類疾病和死亡的主要原因之一, 據估計,全世界有1/3的人口受到結核菌感染,然而,只有5-10%的人會發病,可見宿主的免疫力在結核菌的暴露後扮演了是否發展成結核病的決定性關鍵角色。 目前已知在某些續發性的免疫功能不足情況下,宿主和結核菌之間的平衡會被打破而造成結核病的發生。在許多已開發國家中,糖尿病(DM)是造成這些續發性免疫功能不足最嚴重的疾病。 在台灣,肺結核病患有14%-19%合併糖尿病。甚且, 糖尿病患罹患肺結核的機率是正常人的5-6倍。然而,糖尿病對於肺結核患者的臨床表現及治療結果的影響,至今尚未有完整的研究。 同時,糖尿病病患因免疫能力缺陷而易被感染的分子機轉,目前也仍不清楚。 之前的研究指出,當全血受到BCG分枝桿菌刺激時,在monocytes, DC, NK以及T細胞之間有一個IL-12/IFN-γaxis的反應。 在這個研究中,我們利用臨床表現, 皮膚結核菌素測驗(TST)以及Th1相關細胞激素的體外實驗來比較正常人, 肺結核病患及以肺結核合併糖尿病病患之間免疫能力的差異。
      首先,我們根據病歷從衛生署胸腔病院(Chest Hospital)挑選自2004年10月至2005年2月所有痰結核菌培養陽性病患, 總共140位,並且分成合併糖尿病(DMTB)、未合併糖尿病(TB)兩組,然後,比較兩組的致病率以及產生MDR菌種的比例。 結果告訴我們,DMTB組不僅致病率高(30%),同時也有較高的MDR菌種產生率(28.5% vs 14.2%)。進一步分析糖尿病對於肺結核的影響,我們挑選103位新近診斷肺結核的病患(75位TB,平均年齡:54.8+/- 20.8歲,男:女=52:23; 28位DMTB,平均年齡:58.6+/- 13.4歲,男:女=21:7,平均HbA1C:10.61%),並追蹤1年。 我們分析臨床表現,皮膚結核菌素測驗反應以及治療結果比較。 結果顯示, DMTB病患的肺部空洞性病灶較多,結核菌數量也較高,同時,痰陰轉速率較慢(平均4.2個月vs 1.9個月),而且皮膚結核菌素測驗反應有較弱的趨勢。追蹤1年後,DMTB病患的完治率較低(54.5% vs 87.7%),而且治療失敗率較高(27.2% vs 0%)。 這些資料顯示,在台灣,糖尿病對於結核病的防治有很大的影響。
      接下來,我們使用BCG,BCG+IL-12,及BCG+IFN-γ,分別刺激全血中的白血球,以比較正常人,DMTB以及TB病患之間Th1相關細胞激素產生的能力。 同時,我們也嘗試利用TNF-α antagonist、insulin及GSK3抑制劑以揭開糖尿病這個代謝性疾病和分枝桿菌感染之間的機轉。 實驗數據顯示,當白血球在體外受到BCG刺激時,DMTB病患產生IL-12的能力有較弱的趨勢。 很有趣的,當加入TNF-α antagonist、insulin及GSK3抑制劑時,IFN-γ的產生出現被抑制的現象,而且這個現象在DMTB病患特別明顯。
      總結上面的結果,本篇研究顯示肺結核病患合併糖尿病時,肺部空洞性病灶較及結核菌數量較多,但是痰陰轉速率較慢, 而且皮膚結核菌素測驗反應有較弱的趨勢。 同時,DMTB病患的完治率較低,治療失敗率較高。 DMTB病患的IL-12產生能力有較低的趨勢,而胰島素訊號傳遞途徑與IFN-γ的產生有相關。 這個結果顯示,胰島素的訊息傳遞機轉與發炎反應有關,而糖尿病病人在這個部份是有缺陷的。 這個缺陷可能是導致糖尿病病患免疫能力不足以及臨床表現和TB病患不一樣的原因。 因此,這個訊號傳遞途徑的功能缺陷在未來可能可以成為治療的標的。 本篇研究的結果對於結核病免疫致病機轉的了解以及對於未來結核病的防治提供了新的視野及某種程度的幫助。

      Mycobacterium tuberculosis (M. tuberculosis) infection is a leading cause of morbidity and mortality in humans. It was estimated that while approximately 1/3 of the world population has been infected by tuberculosis (TB) bacilli, only 5-10% of the infected people develop the disease of TB. The immunity of the hosts thus may determine whether TB happens after exposure to M. tuberculosis. The balance of M. tuberculosis and host immunity is tipped by conditions leading to secondary immunodeficiency which contribute to the resurgence of TB. Among these disease, diabetes mellitus (DM) is the most serious underling disease in most developed countries. In Taiwan, 14%- 19% of pulmonary TB patients are complicated with DM. Moreover, the chance of TB in DM patients is 5 -6 times higher than healthy people. However, the influence of diabetes on clinical manifestations and treatment outcome of pulmonary TB patients are not fully investigated in Taiwan. Meanwhile, the molecular mechanism which underlies the immune defects of diabetic patients is not completely understood. Previous studies showed that there is an IL-12/ IFN-γaxis between monocytes, dendritic cells (DC), natural killer cells (NK), and T lymphocytes when whole blood is stimulated with live BCG bacilli. In this study, we investigated the different immune responses of healthy individuals and patients with pulmonary TB complicated with or without diabetes by analyzing clinical manifestations, skin tuberculin response and in vitro Th1 related cytokines production in these groups.
      Firstly, sputum M. tuberculosis cultured-positive patients of Chest Hospital from October, 2004 to February, 2005 were investigated retrospectively by reviewing their medical records. There were 140 patients enrolled and classified as pulmonary tuberculosis complicated with diabetes (DMTB) or not (TB). We then compared the susceptibility and the incidence of multiple drug resistance (MDR) strains between these groups. The data showed that not only a higher susceptibility of TB (30%) but a higher incidence of MDR TB strains (28.5% vs 14.2%) were noted in DMTB group. To further analyzing the influence of diabetes, 103 (75TB, mean age: 54.8±20.8y/o, M:F=52:23; 28 DMTB, mean age: 58.6±13.4y/o, M:F=21:7, mean HbA1c: 10.61%) new patients were enrolled from these 140 patients and followed retrospectively for 1 year. The clinical manifestations, skin tuberculin response, and treatment outcome between TB and DMTB groups were analyzed. The data showed that the cavitary lesions of lungs, and bacterial load were higher in DMTB group. Meanwhile, the sputum conversion rate was slower (mean 4.2 months vs 1.9 months) and there was a trend of less responsive tuberculin skin test in DMTB patients. A lower completed treatment rate (54.5% vs 87.7%) within one year and a higher treatment failure rate (27.2% vs 0%) were noted in the DMTB group. These data indicated that diabetes has a great influence in TB control in Taiwan.
      Secondly, we used BCG alone or BCG+IL-12, and BCG + IFN-γto stimulate whole blood leukocytes to investigate the difference of Th1 cytokines production between healthy volunteers, DMTB, and TB patients who were admitted to Chest Hospital. We also tried to unravel the mechanism underling the interaction between this metabolic disease and mycobacterial infection by using TNF-αantagonist, insulin and GSK3 inhibitors in the stimulation assays. The experimental data showed that when stimulated in vitro, the whole blood leukocytes of DMTB patients had a trend of lower ability to produce IL-12. Interestingly, inhibitory effects on IFN-γproduction by TNF-αantagonist, insulin, and GSK3 inhibitor were noted during in vitro stimulations and more obvious in DMTB patients.
      In conclusion, this study showed that DMTB patients had higher cavitary lesions of lungs and bacterial load, but a slower sputum conversion rate and a trend of less responsive tuberculin skin test. Meanwhile, a poor treatment outcome and a higher treatment failure rate were noted in the DMTB group. DMTB patients had a trend of lower expression of IL-12 during in vitro BCG stimulation. The signaling pathway of insulin was involved in the production of IFN-γ. These results indicate that the signaling pathway of insulin was involved in inflammatory responses. The defect of insulin signaling transduction of diabetic patients probably underlies the molecular mechanism that leads to the clinical difference between DMTB and TB patients and may become a treatment target in the future. The results from these investigations are helpful for understanding the immunopathogenesis of TB and provide novel insights in controlling mycobacterial infection in the population.

    Abstract................................................................I 摘要....................................................................V Table of Contents....................................................VIII Figures and Tables......................................................X Chapter 1: Background...................................................1  Tuberculosis as a major human disease.................................1  The interaction between innate immune system and Mycobacterium  tuberculosis..........................................................1  The role of lymphocytes in controlling infection of Mycobacterium     tuberculosis........................................................2  Cytokines involved in the coordination of immune responses to   tuberculosis........................................................3  Diabetes mellitus (DM) as an important risk factor for tuberculosis...6 Chapter 2: Material and Methods.........................................8  Subject and patients:.................................................8  Triple activation in vitro procedure of whole blood with BCG, BCG+IL-12   and BCG+IFN-γ .....................................................10  Cytokines ELISA......................................................10  Reagents (TNF-α antagonist, insulin, GSK3 inhibitor).................10  Pleural fluid........................................................11  Statistical analysis.................................................11 Chapter 3: Results 12  Part 1: The different manifestations, treatment outcome and tuberculin    skin test (TST) responses of pulmonary tuberculosis patients with    or without diabetes mellitus.....................................12   A. The different manifestations of pulmonary tuberculosis patients    with or without diabetes mellitus................................12   B. The different treatment outcome of pulmonary tuberculosis with    or without diabetes mellitus.....................................14   C. The different responses of tuberculin skin test (TST) between    DMTB and TB groups...............................................15  Part 2: The differences in the production of innate immunity-related    cytokines using ex vivo mycobacteria stimulation in patients with    mycobacterial infections with or without diabetes mellitus.......17  Part 3: The molecular mechanisms leading to the difference in their    cytokine production in patients and controls.....................19 Chapter 4: Discussion..................................................21 Reference List.........................................................29 Figures and Tables .....................................................40

    Allen,S.S., Cassone,L., Lasco,T.M., and McMurray,D.N. (2004). Effect of  
     neutralizing transforming growth factor beta1 on the immune response against
     Mycobacterium tuberculosis in guinea pigs. Infect. Immun. 72, 1358-1363.
    Barnes,P.F., Abrams,J.S., Lu,S., Sieling,P.A., Rea,T.H., and Modlin,R.L.
     (1993). Patterns of cytokine production by mycobacterium-reactive human
     T-cell clones. Infect. Immun. 61, 197-203.
    Bashar,M., Alcabes,P., Rom,W.N., and Condos,R. (2001). Increased incidence of
     multidrug-resistant tuberculosis in diabetic patients on the Bellevue Chest
     Service, 1987 to 1997. Chest 120, 1514-1519.
    Bean,A.G., Roach,D.R., Briscoe,H., France,M.P., Korner,H., Sedgwick,J.D., and
     Britton,W.J. (1999). Structural deficiencies in granuloma formation in TNF
     gene-targeted mice underlie the heightened susceptibility to aerosol
     Mycobacterium tuberculosis infection, which is not compensated for by
     lymphotoxin. J. Immunol. 162, 3504-3511.
    Beckman,E.M., Porcelli,S.A., Morita,C.T., Behar,S.M., Furlong,S.T., and
     Brenner,M.B. (1994). Recognition of a lipid antigen by CD1-restricted alpha
     beta+ T cells. Nature 372, 691-694.
    Bermudez,L.E. and Champsi,J. (1993). Infection with Mycobacterium avium
     induces production of interleukin-10 (IL-10), and administration of anti-IL-
     10 antibody is associated with enhanced resistance to infection in mice.
     Infect. Immun. 61, 3093-3097.
    Bhattacharyya,S., Singla,R., Dey,A.B., and Prasad,H.K. (1999). Dichotomy of
     cytokine profiles in patients and high-risk healthy subjects exposed to
     tuberculosis. Infect. Immun. 67, 5597-5603.
    Bloom,J.D. (1969). Glucose intolerance in pulmonary tuberculosis. Am. Rev.
     Respir. Dis. 100, 38-41.
    Brightbill,H.D., Libraty,D.H., Krutzik,S.R., Yang,R.B., Belisle,J.T.,
     Bleharski,J.R., Maitland,M., Norgard,M.V., Plevy,S.E., Smale,S.T.,
     Brennan,P.J., Bloom,B.R., Godowski,P.J., and Modlin,R.L. (1999). Host
     defense mechanisms triggered by microbial lipoproteins through toll-like
     receptors. Science 285, 732-736.
    Brock,I., Weldingh,K., Lillebaek,T., Follmann,F., and Andersen,P. (2004).
     Comparison of tuberculin skin test and new specific blood test in
     tuberculosis contacts. Am. J. Respir. Crit Care Med. 170, 65-69.
    Carranza,C., Juarez,E., Torres,M., Ellner,J.J., Sada,E., and Schwander,S.K.
     (2006). Mycobacterium tuberculosis growth control by lung macrophages and
     CD8 cells from patient contacts. Am. J. Respir. Crit Care Med. 173, 238-245.
    Casanova,J.L. (2000). [Mendelian predisposition to mycobacterial infections in
     humans]. J. Soc. Biol. 194, 25-28.
    Catherinot,E., Fieschi,C., Feinberg,J., Casanova,J.L., and Couderc,L.J.
     (2005). [Genetic susceptibility to mycobacterial disease: Mendelian
     disorders of the interleukin-12 -interferon-gamma axis]. Rev. Mal Respir.
     22, 767-776.
    Chan,J., Xing,Y., Magliozzo,R.S., and Bloom,B.R. (1992). Killing of virulent M
     ycobacterium tuberculosis by reactive nitrogen intermediates produced by
     activated murine macrophages. J. Exp. Med. 175, 1111-1122.
    Chavez Pachas,A.M., Blank,R., Smith Fawzi,M.C., Bayona,J., Becerra,M.C., and
     Mitnick,C.D. (2004). Identifying early treatment failure on category I
     therapy for pulmonary tuberculosis in Lima Ciudad, Peru. Int. J. Tuberc.
     Lung Dis. 8, 52-58.
    Cooper,A.M., Magram,J., Ferrante,J., and Orme,I.M. (1997a). Interleukin 12 (IL-
     12) is crucial to the development of protective immunity in mice
     intravenously infected with mycobacterium tuberculosis. J. Exp. Med. 186, 39-
     45.
    Cooper,A.M., Magram,J., Ferrante,J., and Orme,I.M. (1997b). Interleukin 12 (IL-
     12) is crucial to the development of protective immunity in mice
     intravenously infected with mycobacterium tuberculosis. J. Exp. Med. 186, 39-
     45.
    Cowie,R.L. (1994). The epidemiology of tuberculosis in gold miners with
     silicosis. Am. J. Respir. Crit Care Med. 150, 1460-1462.
    de Melo,F.A., Afiune,J.B., Ide,N.J., de Almeida,E.A., Spada,D.T.,
     Antelmo,A.N., and Cruz,M.L. (2003). [Epidemiological features of multidrug-
     resistant tuberculosis in a reference service in Sao Paulo city]. Rev. Soc.
     Bras. Med. Trop. 36, 27-34.
    Denis,M. and Gregg,E.O. (1991). Recombinant interleukin-6 increases the
     intracellular and extracellular growth of Mycobacterium avium. Can. J.
     Microbiol. 37, 479-483.
    Deretic,V., Singh,S., Master,S., Harris,J., Roberts,E., Kyei,G., Davis,A., de
     Haro,S., Naylor,J., Lee,H.H., and Vergne,I. (2006). Mycobacterium
     tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host
     defence mechanism. Cell Microbiol. 8, 719-727.
    Desai,B.B., Quinn,P.M., Wolitzky,A.G., Mongini,P.K., Chizzonite,R., and
     Gately,M.K. (1992). IL-12 receptor. II. Distribution and regulation of
     receptor expression. J. Immunol. 148, 3125-3132.
    Ding,A., Nathan,C.F., Graycar,J., Derynck,R., Stuehr,D.J., and Srimal,S.
     (1990). Macrophage deactivating factor and transforming growth factors-beta
     1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide
     synthesis by IFN-gamma. J. Immunol. 145, 940-944.
    Dye,C., Scheele,S., Dolin,P., Pathania,V., and Raviglione,M.C. (1999).
     Consensus statement. Global burden of tuberculosis: estimated incidence,
     prevalence, and mortality by country. WHO Global Surveillance and Monitoring
     Project. JAMA 282, 677-686.
    Farah,M.G., Tverdal,A., Steen,T.W., Heldal,E., Brantsaeter,A.B., and Bjune,G.
     (2005). Treatment outcome of new culture positive pulmonary tuberculosis in
     Norway. BMC. Public Health. 5:14., 14.
    Feinberg,J., Fieschi,C., Doffinger,R., Feinberg,M., Leclerc,T., Boisson-
     Dupuis,S., Picard,C., Bustamante,J., Chapgier,A., Filipe-Santos,O., Ku,C.L.,
     de Beaucoudrey,L., Reichenbach,J., Antoni,G., Balde,R., Alcais,A., and
     Casanova,J.L. (2004a). Bacillus Calmette Guerin triggers the IL-12/IFN-gamma
     axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between
     monocytes, NK, and T lymphocytes. Eur. J. Immunol. 34, 3276-3284.
    Feinberg,J., Fieschi,C., Doffinger,R., Feinberg,M., Leclerc,T., Boisson-
     Dupuis,S., Picard,C., Bustamante,J., Chapgier,A., Filipe-Santos,O., Ku,C.L.,
     de Beaucoudrey,L., Reichenbach,J., Antoni,G., Balde,R., Alcais,A., and
     Casanova,J.L. (2004b). Bacillus Calmette Guerin triggers the IL-12/IFN-gamma
     axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between
     monocytes, NK, and T lymphocytes. Eur. J. Immunol. 34, 3276-3284.
    Feng,C.G., Bean,A.G., Hooi,H., Briscoe,H., and Britton,W.J. (1999). Increase
     in gamma interferon-secreting CD8(+), as well as CD4(+), T cells in lungs
     following aerosol infection with Mycobacterium tuberculosis. Infect. Immun.
     67, 3242-3247.
    Fenhalls,G., Wong,A., Bezuidenhout,J., van Helden,P., Bardin,P., and
     Lukey,P.T. (2000). In situ production of gamma interferon, interleukin-4,
     and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas.
     Infect. Immun. 68, 2827-2836.
    Ferebee,S.H. (1970). Controlled chemoprophylaxis trials in tuberculosis. A
     general review. Bibl. Tuberc. 26:28-106., 28-106.
    Fiorentino,D.F., Zlotnik,A., Mosmann,T.R., Howard,M., and O'Garra,A. (1991).
     IL-10 inhibits cytokine production by activated macrophages. J. Immunol.
     147, 3815-3822.
    Fiorenza,G., Rateni,L., Farroni,M.A., Bogue,C., and Dlugovitzky,D.G. (2005).
     TNF-alpha, TGF-beta and NO relationship in sera from tuberculosis (TB)
     patients of different severity. Immunol. Lett. 98, 45-48.
    Flesch,I.E. and Kaufmann,S.H. (1990). Activation of tuberculostatic macrophage
     functions by gamma interferon, interleukin-4, and tumor necrosis factor.
     Infect. Immun. 58, 2675-2677.
    Flynn,J.L. and Chan,J. (2001). Immunology of tuberculosis. Annu. Rev. Immunol.
     19:93-129., 93-129.
    Flynn,J.L., Chan,J., Triebold,K.J., Dalton,D.K., Stewart,T.A., and Bloom,B.R.
     (1993). An essential role for interferon gamma in resistance to
     Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249-2254.
    Flynn,J.L., Goldstein,M.M., Chan,J., Triebold,K.J., Pfeffer,K.,
     Lowenstein,C.J., Schreiber,R., Mak,T.W., and Bloom,B.R. (1995). Tumor
     necrosis factor-alpha is required in the protective immune response against
     Mycobacterium tuberculosis in mice. Immunity. 2, 561-572.
    Fortune,S.M., Solache,A., Jaeger,A., Hill,P.J., Belisle,J.T., Bloom,B.R.,
     Rubin,E.J., and Ernst,J.D. (2004). Mycobacterium tuberculosis inhibits
     macrophage responses to IFN-gamma through myeloid differentiation factor 88-
     dependent and -independent mechanisms. J. Immunol. 172, 6272-6280.
    Foxman,E.F., Campbell,J.J., and Butcher,E.C. (1997). Multistep navigation and
     the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349-
     1360.
    Fraziano,M., Cappelli,G., Santucci,M., Mariani,F., Amicosante,M., Casarini,M.,
     Giosue,S., Bisetti,A., and Colizzi,V. (1999). Expression of CCR5 is
     increased in human monocyte-derived macrophages and alveolar macrophages in
     the course of in vivo and in vitro Mycobacterium tuberculosis infection.
     AIDS Res. Hum. Retroviruses 15, 869-874.
    Frieden,T.R., Sterling,T.R., Munsiff,S.S., Watt,C.J., and Dye,C. (2003).
     Tuberculosis. Lancet. 362, 887-899.
    Gomez-Reino,J.J., Carmona,L., Valverde,V.R., Mola,E.M., and Montero,M.D.
     (2003). Treatment of rheumatoid arthritis with tumor necrosis factor
     inhibitors may predispose to significant increase in tuberculosis risk: a
     multicenter active-surveillance report. Arthritis Rheum. 48, 2122-2127.
    Gong,J.H., Zhang,M., Modlin,R.L., Linsley,P.S., Iyer,D., Lin,Y., and
     Barnes,P.F. (1996). Interleukin-10 downregulates Mycobacterium tuberculosis-
     induced Th1 responses and CTLA-4 expression. Infect. Immun. 64, 913-918.
    Hirsch,C.S., Ellner,J.J., Blinkhorn,R., and Toossi,Z. (1997). In vitro
     restoration of T cell responses in tuberculosis and augmentation of monocyte
     effector function against Mycobacterium tuberculosis by natural inhibitors
     of transforming growth factor beta. Proc. Natl. Acad. Sci. U. S. A 94, 3926-
     3931.
    Hirsch,C.S., Johnson,J.L., Okwera,A., Kanost,R.A., Wu,M., Peters,P.,
     Muhumuza,M., Mayanja-Kizza,H., Mugerwa,R.D., Mugyenyi,P., Ellner,J.J., and
     Toossi,Z. (2005). Mechanisms of apoptosis of T-cells in human tuberculosis.
     J. Clin. Immunol. 25, 353-364.
    Hirsch,C.S., Yoneda,T., Averill,L., Ellner,J.J., and Toossi,Z. (1994).
     Enhancement of intracellular growth of Mycobacterium tuberculosis in human
     monocytes by transforming growth factor-beta 1. J. Infect. Dis. 170, 1229-
     1237.
    Ho,J.L., He,S.H., Rios,M.J., and Wick,E.A. (1992). Interleukin-4 inhibits
     human macrophage activation by tumor necrosis factor, granulocyte-monocyte
     colony-stimulating factor, and interleukin-3 for antileishmanial activity
     and oxidative burst capacity. J. Infect. Dis. 165, 344-351.
    Hsueh,P.R., Liu,Y.C., So,J., Liu,C.Y., Yang,P.C., and Luh,K.T. (2006).
     Mycobacterium tuberculosis in Taiwan. J. Infect. 52, 77-85.
    Kaufmann,S.H. (1988). CD8+ T lymphocytes in intracellular microbial
     infections. Immunol. Today 9, 168-174.
    Kaufmann,S.H. (1993). Immunity to intracellular bacteria. Annu. Rev. Immunol.
     11:129-63., 129-163.
    Kawakami,K. (2003). Tuberculosis in compromised hosts. Kekkaku 78, 717-722.
    Kawamori,R. (2004). [Diabetes and tuberculosis--bad companions]. Kekkaku. 79,
     25-32.
    Kim,S.J., Hong,Y.P., Lew,W.J., Yang,S.C., and Lee,E.G. (1995). Incidence of
     pulmonary tuberculosis among diabetics. Tuber. Lung Dis. 76, 529-533.
    Ladel,C.H., Szalay,G., Riedel,D., and Kaufmann,S.H. (1997). Interleukin-12
     secretion by Mycobacterium tuberculosis-infected macrophages. Infect. Immun.
     65, 1936-1938.
    Laouar,Y., Sutterwala,F.S., Gorelik,L., and Flavell,R.A. (2005). Transforming
     growth factor-beta controls T helper type 1 cell development through
     regulation of natural killer cell interferon-gamma. Nat. Immunol. 6, 600-607.
    Lazarevic,V., Nolt,D., and Flynn,J.L. (2005). Long-term control of
     Mycobacterium tuberculosis infection is mediated by dynamic immune
     responses. J. Immunol. 175, 1107-1117.
    Lehn,M., Weiser,W.Y., Engelhorn,S., Gillis,S., and Remold,H.G. (1989). IL-4
     inhibits H2O2 production and antileishmanial capacity of human cultured
     monocytes mediated by IFN-gamma. J. Immunol. 143, 3020-3024.
    Liew,F.Y., Li,Y., and Millott,S. (1990). Tumor necrosis factor-alpha
     synergizes with IFN-gamma in mediating killing of Leishmania major through
     the induction of nitric oxide. J. Immunol. 145, 4306-4310.
    Malik,Z.A., Denning,G.M., and Kusner,D.J. (2000). Inhibition of Ca(2+)
     signaling by Mycobacterium tuberculosis is associated with reduced phagosome-
     lysosome fusion and increased survival within human macrophages. J. Exp.
     Med. 191, 287-302.
    Martin,M., Rehani,K., Jope,R.S., and Michalek,S.M. (2005). Toll-like receptor-
     mediated cytokine production is differentially regulated by glycogen
     synthase kinase 3. Nat. Immunol. 6, 777-784.
    Martinez,O.M., Gibbons,R.S., Garovoy,M.R., and Aronson,F.R. (1990). IL-4
     inhibits IL-2 receptor expression and IL-2-dependent proliferation of human
     T cells. J. Immunol. 144, 2211-2215.
    Mazzaccaro,R.J., Gedde,M., Jensen,E.R., van Santen,H.M., Ploegh,H.L.,
     Rock,K.L., and Bloom,B.R. (1996). Major histocompatibility class I
     presentation of soluble antigen facilitated by Mycobacterium tuberculosis
     infection. Proc. Natl. Acad. Sci. U. S. A 93, 11786-11791.
    Mboussa,J., Monabeka,H., Kombo,M., Yokolo,D., Yoka-Mbio,A., and Yala,F.
     (2003). [Course of pulmonary tuberculosis in diabetics]. Rev. Pneumol. Clin.
     59, 39-44.
    Means,T.K., Wang,S., Lien,E., Yoshimura,A., Golenbock,D.T., and Fenton,M.J.
     (1999). Human toll-like receptors mediate cellular activation by
     Mycobacterium tuberculosis. J. Immunol. 163, 3920-3927.
    Mendelson,M., Walters,S., Smith,I., and Kaplan,G. (2005). Strain-specific
     mycobacterial lipids and the stimulation of protective immunity to
     tuberculosis. Tuberculosis. (Edinb. ). 85, 407-413.
    Millar,J.W. and Horne,N.W. (1979). Tuberculosis in immunosuppressed patients.
     Lancet 1, 1176-1178.
    Moreira,A.L., Tsenova-Berkova,L., Wang,J., Laochumroonvorapong,P., Freeman,S.,
     Freedman,V.H., and Kaplan,G. (1997). Effect of cytokine modulation by
     thalidomide on the granulomatous response in murine tuberculosis. Tuber.
     Lung Dis. 78, 47-55.
    Mori,T., Sakatani,M., Yamagishi,F., Takashima,T., Kawabe,Y., Nagao,K.,
     Shigeto,E., Harada,N., Mitarai,S., Okada,M., Suzuki,K., Inoue,Y.,
     Tsuyuguchi,K., Sasaki,Y., Mazurek,G.H., and Tsuyuguchi,I. (2004). Specific
     detection of tuberculosis infection: an interferon-gamma-based assay using
     new antigens. Am. J. Respir. Crit Care Med. 170, 59-64.
    Mugusi,F., Swai,A.B., Alberti,K.G., and McLarty,D.G. (1990). Increased
     prevalence of diabetes mellitus in patients with pulmonary tuberculosis in
     Tanzania. Tubercle. 71, 271-276.
    Murray,R.Z., Kay,J.G., Sangermani,D.G., and Stow,J.L. (2005). A role for the
     phagosome in cytokine secretion. Science. 310, 1492-1495.
    Neff,M. (2003). ATS, CDC, and IDSA update recommendations on the treatment of
     tuberculosis. Am. Fam. Physician 68, 1854, 1857-2.
    Nichols,G.P. (1957). Diabetes among young tuberculous patients; a review of
     the association of the two diseases. Am. Rev. Tuberc. 76, 1016-1030.
    Orme,I.M., Roberts,A.D., Griffin,J.P., and Abrams,J.S. (1993). Cytokine
     secretion by CD4 T lymphocytes acquired in response to Mycobacterium
     tuberculosis infection. J. Immunol. 151, 518-525.
    Patel,S., Doble,B., and Woodgett,J.R. (2004). Glycogen synthase kinase-3 in
     insulin and Wnt signalling: a double-edged sword? Biochem. Soc. Trans. 32,
     803-808.
    Peters,W., Scott,H.M., Chambers,H.F., Flynn,J.L., Charo,I.F., and Ernst,J.D.
     (2001). Chemokine receptor 2 serves an early and essential role in
     resistance to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A.
     98, 7958-7963.
    Ribeiro-Rodrigues,R., Resende,C.T., Rojas,R., Toossi,Z., Dietze,R., Boom,W.H.,
     Maciel,E., and Hirsch,C.S. (2006). A role for CD4+CD25+ T cells in
     regulation of the immune response during human tuberculosis. Clin. Exp.
     Immunol. 144, 25-34.
    Rojas,M., Olivier,M., Gros,P., Barrera,L.F., and Garcia,L.F. (1999). TNF-alpha
     and IL-10 modulate the induction of apoptosis by virulent Mycobacterium
     tuberculosis in murine macrophages. J. Immunol. 162, 6122-6131.
    Rook,G.A. (1990). Mycobacteria, cytokines and antibiotics. Pathol. Biol.
     (Paris) 38, 276-280.
    Rook,G.A., Taverne,J., Leveton,C., and Steele,J. (1987). The role of gamma-
     interferon, vitamin D3 metabolites and tumour necrosis factor in the
     pathogenesis of tuberculosis. Immunology 62, 229-234.
    Sadek,M.I., Sada,E., Toossi,Z., Schwander,S.K., and Rich,E.A. (1998).
     Chemokines induced by infection of mononuclear phagocytes with mycobacteria
     and present in lung alveoli during active pulmonary tuberculosis. Am. J.
     Respir. Cell Mol. Biol. 19, 513-521.
    Saunders,B.M., Frank,A.A., Orme,I.M., and Cooper,A.M. (2000). Interleukin-6
     induces early gamma interferon production in the infected lung but is not
     required for generation of specific immunity to Mycobacterium tuberculosis
     infection. Infect. Immun. 68, 3322-3326.
    Schlesinger,L.S. (1993). Macrophage phagocytosis of virulent but not
     attenuated strains of Mycobacterium tuberculosis is mediated by mannose
     receptors in addition to complement receptors. J. Immunol. 150, 2920-2930.
    Schlesinger,L.S., Bellinger-Kawahara,C.G., Payne,N.R., and Horwitz,M.A.
     (1990). Phagocytosis of Mycobacterium tuberculosis is mediated by human
     monocyte complement receptors and complement component C3. J. Immunol. 144,
     2771-2780.
    Schwarz,E.M., Salgame,P., and Bloom,B.R. (1993). Molecular regulation of human
     interleukin 2 and T-cell function by interleukin 4. Proc. Natl. Acad. Sci.
     U. S. A 90, 7734-7738.
    Scott,H.M. and Flynn,J.L. (2002). Mycobacterium tuberculosis in chemokine
     receptor 2-deficient mice: influence of dose on disease progression. Infect.
     Immun. 70, 5946-5954.
    Seah,G.T., Scott,G.M., and Rook,G.A. (2000). Type 2 cytokine gene activation
     and its relationship to extent of disease in patients with tuberculosis. J.
     Infect. Dis. 181, 385-389.
    Selwyn,P.A., Hartel,D., Lewis,V.A., Schoenbaum,E.E., Vermund,S.H., Klein,R.S.,
     Walker,A.T., and Friedland,G.H. (1989). A prospective study of the risk of
     tuberculosis among intravenous drug users with human immunodeficiency virus
     infection. N. Engl. J. Med. 320, 545-550.
    Serbina,N.V. and Flynn,J.L. (1999). Early emergence of CD8(+) T cells primed
     for production of type 1 cytokines in the lungs of Mycobacterium
     tuberculosis-infected mice. Infect. Immun. 67, 3980-3988.
    Serbina,N.V., Liu,C.C., Scanga,C.A., and Flynn,J.L. (2000). CD8+ CTL from
     lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo
     and lyse infected macrophages. J. Immunol. 165, 353-363.
    Shaikh,M.A., Singla,R., Khan,N.B., Sharif,N.S., and Saigh,M.O. (2003). Does
     diabetes alter the radiological presentation of pulmonary tuberculosis.
     Saudi. Med. J. 24, 278-281.
    Skogberg,K., Ruutu,P., Tukiainen,P., and Valtonen,V. (1993). Effect of
     immunosuppressive therapy on the clinical presentation and outcome of
     tuberculosis. Clin. Infect. Dis. 17, 1012-1017.
    Smith,I. (2003). Mycobacterium tuberculosis pathogenesis and molecular
     determinants of virulence. Clin. Microbiol. Rev. 16, 463-496.
    Stenger,S. (2005). Immunological control of tuberculosis: role of tumour
     necrosis factor and more. Ann. Rheum. Dis. 64 Suppl 4:iv24-8., iv24-iv28.
    Stokes,R.W., Haidl,I.D., Jefferies,W.A., and Speert,D.P. (1993). Mycobacteria-
     macrophage interactions. Macrophage phenotype determines the nonopsonic
     binding of Mycobacterium tuberculosis to murine macrophages. J. Immunol.
     151, 7067-7076.
    Subhash,H.S., Ashwin,I., Jesudason,M.V., Abharam,O.C., John,G., Cherian,A.M.,
     and Thomas,K. (2003). Clinical characteristics and treatment response among
     patients with multidrug-resistant tuberculosis: a retrospective study.
     Indian J. Chest Dis. Allied Sci. 45, 97-103.
    Teitelbaum,R., Cammer,M., Maitland,M.L., Freitag,N.E., Condeelis,J., and
     Bloom,B.R. (1999). Mycobacterial infection of macrophages results in
     membrane-permeable phagosomes. Proc. Natl. Acad. Sci. U. S. A 96, 15190-
     15195.
    Toossi,Z. and Ellner,J.J. (1998). The role of TGF beta in the pathogenesis of
     human tuberculosis. Clin. Immunol. Immunopathol. 87, 107-114.
    Toossi,Z., Gogate,P., Shiratsuchi,H., Young,T., and Ellner,J.J. (1995).
     Enhanced production of TGF-beta by blood monocytes from patients with active
     tuberculosis and presence of TGF-beta in tuberculous granulomatous lung
     lesions. J. Immunol. 154, 465-473.
    Tsao,T.C., Chiou,W., Lin,H., Wu,T., Lin,M., Yang,P., and Tsai,Y. (2002).
     Change in demographic picture and increase of drug resistance in
     pulmonarytuberculosis in a 10-year interval in Taiwan. Infection. 30, 75-80.
    Tsukaguchi,K., Okamura,H., Ikuno,M., Kobayashi,A., Fukuoka,A., Takenaka,H.,
     Yamamoto,C., Tokuyama,T., Okamoto,Y., Fu,A., Yoshikawa,M., Yoneda,T., and
     Narita,N. (1997). [The relation between diabetes mellitus and IFN-gamma, IL-
     12 and IL-10 productions by CD4+ alpha beta T cells and monocytes in
     patients with pulmonary tuberculosis]. Kekkaku 72, 617-622.
    Underhill,D.M., Ozinsky,A., Smith,K.D., and Aderem,A. (1999). Toll-like
     receptor-2 mediates mycobacteria-induced proinflammatory signaling in
     macrophages. Proc. Natl. Acad. Sci. U. S. A 96, 14459-14463.
    Villarino,M.E. and Clairy,M. (2001). Tuberculosis due to environment, biology,
     or both? Chest. 120, 1435-1437.
    Walrand,S., Guillet,C., Boirie,Y., and Vasson,M.P. (2006). Insulin
     differentially regulates monocyte and polymorphonuclear neutrophil functions
     in healthy young and elderly humans. J. Clin. Endocrinol. Metab. ..
    Yang,C.S., Lee,J.S., Jung,S.B., Oh,J.H., Song,C.H., Kim,H.J., Park,J.K.,
     Paik,T.H., and Jo,E.K. (2006). Differential regulation of interleukin-12 and
     tumour necrosis factor-alpha by phosphatidylinositol 3-kinase and ERK 1/2
     pathways during Mycobacterium tuberculosis infection. Clin. Exp. Immunol.
     143, 150-160.
    Yoshiyama,T., Ogata,H., and Wada,M. (2005). [Treatment results of multi drug  
     resistant tuberculosis, a hospital based study]. Kekkaku. 80, 687-693.
    Zhu,H. and Wang,J.H. (2006). [Risk factors for the development of pulmonary
     tuberculosis among type 2 diabetes mellitus patients]. Zhonghua Liu Xing.
     Bing. Xue. Za Zhi. 27, 58-62.
    Zimmerli,S., Edwards,S., and Ernst,J.D. (1996). Selective receptor blockade
     during phagocytosis does not alter the survival and growth of Mycobacterium
     tuberculosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 15, 760-
     770.
    Zimmet,P., Alberti,K.G., and Shaw,J. (2001a). Global and societal implications
     of the diabetes epidemic. Nature. 414, 782-787.
    Zimmet,P., Alberti,K.G., and Shaw,J. (2001b). Global and societal implications
     of the diabetes epidemic. Nature. 414, 782-787.

    下載圖示 校內:2007-09-12公開
    校外:2007-09-12公開
    QR CODE