簡易檢索 / 詳目顯示

研究生: 游子晨
You, Zih‐Chen
論文名稱: 應用臨前降雨指標於蒸發互補關係推估台灣長期蒸發量
Estimating long-term evaporation in Taiwan by using the evaporation complementary relationship with antecedent rainfall index
指導教授: 陳憲宗
Chen, Shien‐Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 蒸發互補關係實際蒸發量皿蒸發量臨前降雨指數
外文關鍵詞: evaporation complementary relationship, actual evaporation, pan evaporation, antecedent precipitation index
相關次數: 點閱:27下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去數十年來,研究發現全球各地許多地區皿蒸發量呈現減少的趨勢,與全球暖化應造成蒸發量增加的預測不同,因此提出蒸發互補理論以解釋此一現象。本研究透過結合臨前降雨量指標與實際蒸發量作為蒸發互補關係的環境乾溼指標,率定蒸發互補關係改良公式的最佳參數值,以建立符合台灣各地區的蒸發互補關係公式,並由此公式推算出實際蒸發量。本研究根據蒐集台灣近五十年來完整的皿蒸發量資料及依互補關係推估的實際蒸發量資料進行各項分析,觀察兩蒸發量間關係發現,台灣各地區每月實際蒸發量與皿蒸發觀測量的比例約介於0.55倍至0.87倍之間,且冬季乾燥氣候時兩蒸發量間比值差距較夏季大,符合蒸發互補理論。本研究將台灣年蒸發量以線性回歸進行趨勢分析,除台南測站資料年份較少不計以外,恆春及台東年實際蒸發為減少趨勢,其餘各地區年實際蒸發量均呈現增加的趨勢;而皿蒸發量除台南以外皆呈現增加的趨勢。綜合研究結果,台灣實際蒸發量仍大致呈現增加的趨勢,但增加幅度相對皿蒸發量變化程度較低。本研究透過蒸發互補關係推估台灣實際蒸發量,期望能藉由更精準的水文量推估,幫助台灣進行用水量規劃及調配,並可作為未來水文循環相關研究的參考。

    Over the past few decades, studies have found a decreasing trend in pan evaporation in many areas around the world. This trend contrasts with predictions that global warming should cause evaporation to increase. Therefore, the evaporation complementary theory was proposed to explain this phenomenon. This study combines the antecedent precipitations and actual evaporation estimates to establish an environmental dryness/wetness index for the evaporation complementary relationship. The optimal parameter values of the improved evaporation complementary formula are calibrated to establish the formulae for various regions in Taiwan. Then, the actual evaporation amount is deduced from the formula. This study analyzed Taiwan's complete evaporation data over the past fifty years to estimate the actual evaporation data by the evaporation complementary relationships. Comparison of the actual evaporation estimate and pan evaporation found that a larger disparity between the two types of evaporation observed in dry winter than in summer, aligning with the theory of evaporation complementarity. Moreover, Taiwan's actual evaporation generally shows an increasing trend, although the magnitude of increase is lower than that of pan evaporation. This study estimated the actual evaporation data to assist in water resource planning and allocation in Taiwan and can be a proper reference for evaporation estimation in the hydrological cycle.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 皿蒸發量變化趨勢 2 1.2.2 蒸發互補關係理論緣起 2 1.3 論文架構 4 第二章 研究資料選用 6 2.1 蒸發資料選取 6 2.1.1 研究測站選擇 6 2.1.2 A型蒸發皿介紹 9 2.2 氣象資料蒐集 11 2.2.1 影響蒸發量氣象因子資料 11 2.2.2 欠缺資料補遺 13 第三章 研究理論 14 3.1 蒸發互補理論介紹 14 3.2 蒸發互補關係改良式 17 3.3 蒸發互補關係改良方程式推導 19 3.4 代入邊界條件限制推導蒸發互補關係式 21 3.5 環境乾溼指標調整 26 3.5.1 環境乾濕指標選用因子 26 3.5.2 標準化環境乾濕指標 27 3.6 蒸發量估算 29 3.6.1 表象潛勢蒸發量 29 3.6.2 估算潛勢蒸發量 29 3.6.3 估算實際蒸發量 33 3.7 求解最佳蒸發互補關係改良式 35 第四章 研究結果 42 4.1 推估每日實際蒸發量 42 4.2 完整蒸發量分析 44 第五章 結論與建議 58 5.1 結論 58 5.2 建議 60 參考文獻 61

    Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration - guidelines for computing crop water requirements - FAO 2. Irrigation and drainage paper 56.
    Ahwide, F., Spena, A., and El-Kafrawy, A. (2013). Correlation for the Average Daily Diffuse Fraction with Clearness Index and Estimation of Beam Solar Radiation and Possible Sunshine Hours Fraction in Sabha, Ghdames and Tripoli – Libya. APCBEE Procedia 5, 208–220.
    Bouchet, R. J. (1963) Evapotranspiration re’elle et potentielle, signification climatique. The International Association of Hydrological Sciences Publication No. 62, Berkeley, CA, 134–142.
    Brutsaert, W., and Parlange, M. B. (1998). Hydrological cycle explains the evaporation paradox, Nature, 396, 30.
    Brutsaert, W. (2015). A generalized complementary principle with physical constraints for land‐surface evaporation. Water Resources Research, 51(10), 8087–8093.
    Burn, D. H., and Hesch, N. M., (2007). Trends in evaporation for the Canadian Prairies. Journal of Hydrology 336, 61–73.
    Chattopadhyay, N., and Hulme, M. (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87(1), 55–73.
    Kahler, D. M., and Brutsaert, W. (2006). Complementary relationship between daily evaporation in the environment and pan evaporation. Water Resources Research, 42.
    Dingman, S. L. (2015). Physical Hydrology, Third ed. Waveland Press, The United States of America, 84–130.
    Hobbins, M., Ramirez, J. A., and Brown, T. C. (2004). Trend in pan evaporation and actual evapotranspiration across the conterminous US: paradoxical or complementary? Geophysical Research Letters, 31, L13503.
    Lawrimore, J. H., and Peterson, T. C. (2000). Pan evaporation trends in dry and humid regions of United States. Journal of Hydrometeorology, 1, 543–546.
    Liu, B., Xu, M., Henderson, M., and Gong, W. (2004). A spatial analysis of pan evaporation trends in China, 1955–2000. Journal of Geophysical Research, 109, D15102.
    Moonen, A. C., Ercoli, L., Mariotti, M., and Masoni, A. (2002). Climate change in Italy indicated by agrometeorological indices over 122 years. Agricultural and Forest Meteorology 111, 13–27.
    Nandagiri, L., and Kovoor, G. M. (2005). Sensitivity of the Food and Agriculture Organization Penman-Monteith Evapotranspiration Estimates to Alternative Procedures for Estimation of Parameters. Journal of Irrigation and Drainage Engineering, 131, 238–248.
    Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A, 193, 120–145.
    Peterson, T. C., Golubev, V. S., and Groisman P. Ya. (1992). Evaporation losing its strength. Nature, 377, 687–688.
    Linsley, R. K. (2015). Hydrology for Engineers, 169–173.
    Heggen, R. J. (2001). Normalized antecedent precipitation index, Journal of hydrologic engineering, September/October 2001 , 377–381.
    Sposito, G. (2017). Understanding the Budyko Equation. Water, 9, 236.
    Tebakari, T., Yoshitani, J., and Suvanpimol, C. (2005). Time–space trend analysis in pan evaporation over kingdom of Thailand, Journal of Hydrological Engineering, 10, 205–215.
    Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40, W02502.
    中央氣象局e導覽,(2024)網站擷取時間2024年5月11日,網址: https://etour.cwa.gov.tw/station.php?stn_id=8。
    中央氣象局e導覽,(2024)網站擷取時間2024年5月11日,網址: https://etour.cwa.gov.tw/guide_inpage.php?stn_id=8&floor_id=8&spot_id=10。
    王宥蓁(2019)以蒸發互補關係推算台灣實際蒸發量,逢甲大學大學水利工程與資源保育學系碩士論文。
    朱佳仁(2005)台灣地區降雨與蒸發散研究(I) ,國家科學委員會專題研究計畫。
    朱佳仁(2007)台灣地區降雨與蒸發散研究 (II) ,國家科學委員會專題研究計畫。
    朱佳仁(2008)台灣地區降雨與蒸發散研究 (III) ,國家科學委員會專題研究計畫。
    李奕欣(2014)台灣長期皿蒸發量趨勢分析,逢甲大學水利工程與資源保育學系碩士論文。
    張格綸(2007)應用蒸發皿係數推估地區蒸發散量之研究,國立成功大學資源工程學系碩士論文。
    陳憲宗、李奕欣(2016)「台灣長期皿蒸發量趨勢分析及蒸發互補關係初探」,農業工程學報,62 (1),12–28。
    劉育杰(2016)建立適用於臺灣之蒸發互補關係濕度指標,逢甲大學水利工程與資源保育學系碩士論文
    鄭雲天(2020)以蒸發互補公式最佳參數推算實際蒸發量,逢甲大學水利工程與資源保育學系碩士論文。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE