| 研究生: |
莊舒涵 Chuang, Shu-Han |
|---|---|
| 論文名稱: |
探討前胸腺素在肺纖維化致病機轉的角色 The Role of prothymosin α in the pathogenesis of pulmonary fibrosis |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 肺纖維化 、乙型轉化生長因子 、上皮-間質轉化 、前胸腺素 |
| 外文關鍵詞: | pulmonary fibrosis, TGF-β, epithelial-mesenchymal transition, EMT, prothymosin α |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺上皮細胞重複性受到損傷可能會因為許多肺泡的微環境的改變,促進肺上皮細胞減少以及間質性細胞堆積,導致不正常的細胞修復以及重建,肺間質的組織增厚,造成肺組織喪失氧氣交換的能力,呼吸系統失能,且過多的細胞外基質(Extracellular matrix, ECM)堆積在肺中導致肺纖維化(Pulmonary fibrosis)。促進纖維化因子是影響肺泡微環境之一,其中乙型轉化生長因子(Transforming growth factor-β, TGF-β)與組織發育、致癌以及纖維化有關,也是上皮-間質轉化(Epithelial-mesenchymal transition, EMT)的主要誘導者。EMT是上皮細胞轉變成間質型細胞的過程,在肺損傷後的組織修復與傷疤的形成扮演重要的角色。前胸腺素(Prothymosin α, ProT)是酸性核蛋白,會調節細胞的轉錄、染色質重建以及免疫調節等,在過去實驗室的研究發現在四氯化碳(CCl4)誘導的肝纖維化中,ProT可以調控Smad7 蛋白的表現。因此,我們假設ProT可能通過抑制TGF-β訊息傳遞路徑來抑制肺纖維化,利用博萊黴素(Bleomycin)誘導肺纖維化的動物模式中研究ProT在肺損傷以及纖維化中的致病機轉。我們在細胞實驗上證實在TGF-β誘導後,ProT過量表現的肺上皮細胞中,磷酸化Smad2表現會下降,且被誘導增加的Snail及N-cadherin也因為ProT的過量表現而被抑制了,相反的E-cadherin回升,也發現ProT會抑制細胞爬行的
能力,另外在ProT下降表現的細胞中有一致的證實。在動物實驗方面,首先我們發現在ProT基因轉殖鼠的肺臟中,Smad7的表現量較高。而在小鼠肺纖維化的模式中,發現ProT基因轉殖鼠磷酸化Smad2及纖維母細胞特異性蛋白(Fibroblast specific protein 1, FSP1)的表現量減少,另一方面也發現肺纖維化在一般小鼠較ProT基因轉殖鼠嚴重。綜合以上結果,本篇研究指出ProT藉由增加Smad7的表現來抑制TGF-β誘導的EMT中扮演重要角色,並且可以減少肺纖維化的發生。
Pulmonary fibrosis is the formation or development of excess deposition of extracellular matrix in the lung. Repetitive injury of alveolar epithelium may cause dysregulated repair and aberrant tissue remodeling. Many alterations in the alveolar microenvironment eventually promote loss of alveolar epithelial cells and accumulation of activated fibroblasts and myofibroblasts, leading to progressive fibrosis. Transforming growth factor-β (TGF-β) is one of the profibrogenic cytokines responsible for tissue development, carcinogenesis, and fibrosis. It is also a major inducer of epithelial-mesenchymal transition (EMT). EMT is a process required for epithelial cells undergoing phenotypic changes to mesenchymal counterparts and gives rise to myofibroblasts, which plays an important role in tissue repair and scar formation following epithelial injury. Prothymosin α (ProT) is an acidic nuclear protein and an important regulator of cell proliferation, transcription, chromatin remodeling, and immunomodulation. We have demonstrated previously that ProT can upregulate smad7 protein levels and reduce CCl4-induced liver fibrosis in mice. Therefore, we hypothesized that ProT may play a pivotal role in suppressing pulmonary fibrosis through the inhibition of TGF-β signaling pathway. Here we studied the role of ProT in the pathogenesis of lung injury and fibrosis in a mouse model of bleomycin-induced pulmonary fibrosis. We showed that phosphorylated smad2 levels were reduced in ProT-overexpressing lung epithelial cells after treatment with TGF-β. We also found that TGF-β-induced downregulation of E-cadherin and upregulation of Snail and N-cadherin could be suppressed by ProT overexpression in A549 lung epithelium-like cells. Furthermore, ProT transgenic mice expressed higher levels of smad7 in the lung. Therefore in our animal model, we found that pulmonary fibrosis and fibroblast specific protein 1 (FSP1) were reduced in ProT transgenic mice compared to non-transgenic mice after bleomycin treatments. Taken together, our results suggest an important regulatory role of ProT in the inhibition of TGF-β-induced EMT through the upregulation of smad7.
Araya, J., and Nishimura, S.L. (2010). Fibrogenic reactions in lung disease. Annual Review of Pathology 5, 77-98.
Ashcroft, T., Simpson, J.M., and Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41, 467-470.
American Lung Association: http://www.lung.org/ (2013).
Auerbach, O., Garfinkel, L., and Hammond, E.C. (1974). Relation of smoking and age to findings in lung parenchyma: a microscopic study. Chest 65, 29-35.
Barnes, P.J. (2008a). The cytokine network in asthma and chronic obstructive pulmonary disease. The Journal of Clinical Investigation 118, 3546-3556.
Barnes, P.J. (2008b). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology 8, 183-192.
Borok2, B.C.W.a.Z. (2007). TGF- -induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol.
Chua, K.-N., Ma, J., and Thiery, J.-P. (2007). Targeted therapies in control of EMT in carcinoma and fibrosis. Drug Discovery Today: Disease Mechanisms 4, 261-267.
Cotter, M.A., 2nd, and Robertson, E.S. (2000). Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin α. Molecular and Cellular Biology 20, 5722-5735.
Covelo, G., Sarandeses, C.S., Diaz-Jullien, C., and Freire, M. (2006). Prothymosinαinteracts with free core histones in the nucleus of dividing cells. J Biochem 140, 627-637.
Eickelberg, O., and Selman, M. (2010). Update in diffuse parenchymal lung disease 2009. American Jurnal of Respiratory and Critical Care Medicine 181, 883-888.
Eschenfeldt, W.H., and Berger, S.L. (1986). The human prothymosin α gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proceedings of the National Academy of Sciences of the United States of America 83, 9403-9407.
Evstafieva, A.G., Belov, G.A., Rubtsov, Y.P., Kalkum, M., Joseph, B., Chichkova, N.V., Sukhacheva, E.A., Bogdanov, A.A., Pettersson, R.F., Agol, V.I., et al. (2003). Apoptosis-related fragmentation, translocation, and properties of human prothymosinα. Experimental Cell Research 284, 211-223.
Faler, B.J., Macsata, R.A., Plummer, D., Mishra, L., and Sidawy, A.N. (2006). Transforming growth factor-βand wound healing. Perspectives in Vascular Surgery and Endovascular Therapy 18, 55-62.
Haritos, A.A., Tsolas, O., and Horecker, B.L. (1984). Distribution of prothymosin α in rat tissues. Proceedings of the National Academy of Sciences of the United States of America 81, 1391-1393.
Heine, U., Munoz, E.F., Flanders, K.C., Ellingsworth, L.R., Lam, H.Y., Thompson, N.L., Roberts, A.B., and Sporn, M.B. (1987). Role of transforming growth factor-β in the development of the mouse embryo. The Journal of Cell Biology 105, 2861-2876.
Ioannou, K., Samara, P., Livaniou, E., Derhovanessian, E., and Tsitsilonis, O.E. (2012). Prothymosin α: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunology, Immunotherapy : CII 61, 599-614.
Jankowich, M.D., and Rounds, S.I. (2012). Combined pulmonary fibrosis and emphysema syndrome: a review. Chest 141, 222-231.
Kalluri, R., and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation 112, 1776-1784.
Kang, H.R., Cho, S.J., Lee, C.G., Homer, R.J., and Elias, J.A. (2007). Transforming growth factor (TGF)-β1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. The Journal of Biological Chemistry 282, 7723-7732.
Karetsou, Z., Sandaltzopoulos, R., Frangou-Lazaridis, M., Lai, C.Y., Tsolas, O., Becker, P.B., and Papamarcaki, T. (1998). Prothymosinαmodulates the interaction of histone H1 with chromatin. Nucleic Acids Research 26, 3111-3118.
Katzenstein, A.L., Mukhopadhyay, S., Zanardi, C., and Dexter, E. (2010). Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens. Human Pathology 41, 316-325.
Khalil, N., O'Connor, R.N., Unruh, H.W., Warren, P.W., Flanders, K.C., Kemp, A., Bereznay, O.H., and Greenberg, A.H. (1991). Increased production and immunohistochemical localization of transforming growth factor-β in idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology 5, 155-162.
Kobayashi, T., Wang, T., Maezawa, M., Kobayashi, M., Ohnishi, S., Hatanaka, K., Hige, S., Shimizu, Y., Kato, M., Asaka, M., et al. (2006). Overexpression of the oncoprotein prothymosin α triggers a p53 response that involves p53 acetylation. Cancer Research 66, 3137-3144.
Letsas, K.P., and Frangou-Lazaridis, M. (2006). Surfing on prothymosin α proliferation and anti-apoptotic properties. Neoplasma 53, 92-96.
Leys, C.M., Nomura, S., LaFleur, B.J., Ferrone, S., Kaminishi, M., Montgomery, E., and Goldenring, J.R. (2007). Expression and prognostic significance of prothymosin-α and ERp57 in human gastric cancer. Surgery 141, 41-50.
Li, K.J., Shiau, A.L., Chiou, Y.Y., Yo, Y.T., and Wu, C.L. (2005). Transgenic overexpression of prothymosin α induces development of polycystic kidney disease. Kidney International 67, 1710-1722.
Li, M., Krishnaveni, M.S., Li, C., Zhou, B., Xing, Y., Banfalvi, A., Li, A., Lombardi, V., Akbari, O., Borok, Z., et al. (2011). Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. The Journal of Clinical Investigation 121, 277-287.
Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K., and Flavell, R.A. (2006). Transforming growth factor-β regulation of immune responses. Annual Review of Immunology 24, 99-146.
Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology : JASN 15, 1-12.
Lokke, A., Lange, P., Scharling, H., Fabricius, P., and Vestbo, J. (2006). Developing COPD: a 25 year follow up study of the general population. Thorax 61, 935-939.
Mackinnon, A.C., Gibbons, M.A., Farnworth, S.L., Leffler, H., Nilsson, U.J., Delaine, T., Simpson, A.J., Forbes, S.J., Hirani, N., Gauldie, J., et al. (2012). Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185, 537-546.
Magdalena, C., Dominguez, F., Loidi, L., and Puente, J.L. (2000). Tumour prothymosin αcontent, a potential prognostic marker for primary breast cancer. British Journal of Cancer 82, 584-590.
Makarova, T., Grebenshikov, N., Egorov, C., Vartapetian, A., and Bogdanov, A. (1989). Prothymosin α is an evolutionary conserved protein covalently linked to a small RNA. FEBS Letters 257, 247-250.
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.
Marwick, J.A., Kirkham, P.A., Stevenson, C.S., Danahay, H., Giddings, J., Butler, K., Donaldson, K., Macnee, W., and Rahman, I. (2004). Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. American Journal of Respiratory Cell and Molecular Biology 31, 633-642.
Miettinen, P.J., Ebner, R., Lopez, A.R., and Derynck, R. (1994). TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. The Journal of Cell Biology 127, 2021-2036.
Mosoian, A. (2011). Intracellular and extracellular cytokine-like functions of prothymosinα: implications for the development of immunotherapies. Future Medicinal Chemistry 3, 1199-1208.
Mutlu, G.M., Budinger, G.R., Wu, M., Lam, A.P., Zirk, A., Rivera, S., Urich, D., Chiarella, S.E., Go, L.H., Ghosh, A.K., et al. (2012). Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling. Thorax 67, 139-146.
Nawshad, A., Lagamba, D., Polad, A., and Hay, E.D. (2005). Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs 179, 11-23.
Roberts, A.B., and Sporn, M.B. (1993). Physiological actions and clinical applications of transforming growth factor-β(TGF-β). Growth Factors (Chur, Switzerland) 8, 1-9.
Rotzer, D., Roth, M., Lutz, M., Lindemann, D., Sebald, W., and Knaus, P. (2001). Type III TGF-β receptor-independent signalling of TGF-β2 via TbetaRII-B, an alternatively spliced TGF-β type II receptor. EMBO J 20, 480-490.
Sasaki, H., Nonaka, M., Fujii, Y., Yamakawa, Y., Fukai, I., Kiriyama, M., and Sasaki, M. (2001a). Expression of the prothymosin-α gene as a prognostic factor in lung cancer. Surgery Today 31, 936-938.
Sasaki, H., Sato, Y., Kondo, S., Fukai, I., Kiriyama, M., Yamakawa, Y., and Fujii, Y. (2001b). Expression of the prothymosin α mRNA correlated with that of N-myc in neuroblastoma. Cancer Letters 168, 191-195.
Schuster, N., and Krieglstein, K. (2002). Mechanisms of TGF-β-mediated apoptosis. Cell and Tissue Research 307, 1-14.
Sheppard, D. (2006). Transforming growth factor β: a central modulator of pulmonary and airway inflammation and fibrosis. Proceedings of the American Thoracic Society 3, 413-417.
Sime, P.J., and O'Reilly, K.M. (2001). Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clinical Immunology (Orlando, Fla) 99, 308-319.
Smith, M.R. (1995). Prothymosin α: in search of a function. Leukemia & Lymphoma 18, 209-214.
Su, B.H., Tseng, Y.L., Shieh, G.S., Chen, Y.C., Shiang, Y.C., Wu, P., Li, K.J., Yen, T.H., Shiau, A.L., and Wu, C.L. (2013). Prothymosin α overexpression contributes to the development of pulmonary emphysema. Nature Communications 4, 1906.
Subramanian, C., Hasan, S., Rowe, M., Hottiger, M., Orre, R., and Robertson, E.S. (2002). Epstein-Barr virus nuclear antigen 3C and prothymosin α interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. Journal of Virology 76, 4699-4708.
Suzuki, S., Takahashi, S., Takahashi, S., Takeshita, K., Hikosaka, A., Wakita, T., Nishiyama, N., Fujita, T., Okamura, T., and Shirai, T. (2006). Expression of prothymosin α is correlated with development and progression in human prostate cancers. The Prostate 66, 463-469.
Thannickal, V.J., Toews, G.B., White, E.S., Lynch, J.P., 3rd, and Martinez, F.J. (2004). Mechanisms of pulmonary fibrosis. Annual review of medicine 55, 395-417.
Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442-454.
Thiery, J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology 15, 740-746.
Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology 7, 131-142.
Tzai, T.S., Tsai, Y.S., Shiau, A.L., Wu, C.L., Shieh, G.S., and Tsai, H.T. (2006). Urine prothymosin-α as novel tumor marker for detection and follow-up of bladder cancer. Urology 67, 294-299.
Ueda, H., Matsunaga, H., and Halder, S.K. (2012). Prothymosin α plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Annals of the New York Academy of Sciences 1269, 34-43.
Usui, T., Takase, M., Kaji, Y., Suzuki, K., Ishida, K., Tsuru, T., Miyata, K., Kawabata, M., and Yamashita, H. (1998). Extracellular matrix production regulation by TGF-β in corneal endothelial cells. Investigative Ophthalmology & Visual Science 39, 1981-1989.
Willis, B.C., and Borok, Z. (2007). TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293, L525-534.
Wu, C.G., Habib, N.A., Mitry, R.R., Reitsma, P.H., van Deventer, S.J., and Chamuleau, R.A. (1997a). Overexpression of hepatic prothymosin alpha, a novel marker for human hepatocellular carcinoma. British Journal of Cancer 76, 1199-1204.
Wu, C.L., Shiau, A.L., and Lin, C.S. (1997b). Prothymosin α promotes cell proliferation in NIH3T3 cells. Life Sciences 61, 2091-2101.
Zakharova, N.I., Sokolov, V.V., Suvorova, A.A., Shiau, A.I., Wu, C.L., and Efstaf'eva, A.G. (2011). [Prothymosin α interacts with C-terminal domain of histone H1 and dissociates p53-histone H1 complex]. Molecular Biology 45, 679-688.
Zavadil, J., and Bottinger, E.P. (2005). TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764-5774.
Zeisberg, M., and Kalluri, R. (2004). The role of epithelial-to-mesenchymal transition in renal fibrosis. Journal of Molecular Medicine (Berlin, Germany) 82, 175-181.
校內:2018-08-12公開