簡易檢索 / 詳目顯示

研究生: 林育儒
Lin, Yu-Ju
論文名稱: 以共軛高分子的掺雜機制運用於高分子薄膜電晶體及以氟化鋰為緩衝層的有機薄膜電晶體之研究
Research on Application of Conjugated Polymer Doping Process and Lithium Fluoride as the Buffer Layer in Organic Thin Film Transistors
指導教授: 王永和
Wang, Yeong-Her
溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 102
中文關鍵詞: 有機薄膜電晶體共軛高分子高分子電解質氟化鋰
外文關鍵詞: Conjugated polymer, Organic thin film transistor (OTFT), Lithium fluoride (LiF), Polymer electrolyte
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有機半導體材料因為其價格低廉、製程簡易和可製作於塑膠基板上等優點,所以吸引著多數的研究人員投入研究,其在產品的應用上可製作成有機薄膜電晶體(OTFT)、有機發光二極體(OLED)、太陽能電池等。
    本論文便著重於OTFT的研究,而主動層材料包含高分子與小分子材料,有機材料依分子量的差別又可分為高分子材料與小分子材料,在OTFT的電特性上,小分子OTFT優於高分子OTFT,但是在製程上,因高分子薄膜可以旋轉塗佈製程成膜,而小分子是以物理氣相沉積成膜,以難易度來說,高分子優於小分子。
    在高分子OTFT方面,是以共軛高分子為主動層材料,在1970年代,希格、麥迪亞米德和白川英樹發現共軛高分子可透過參雜來增加導電度,也因這個研究而得到2000年諾貝爾化學獎,根據此參雜理論而製作出以共軛高分子(Poly(diphenylamine) (PDPA))為主動層、高分子電解質(poly(diallyldimethylammonium chloride) (PDDA))為緩衝層的增強型高分子OTFT,利用加於閘極與源極間的電場來推動高分子電解質中的氯離子而對PDPA做參雜,參雜的程度可以藉由電場強度來控制,就類似於增強型無機金氧半場效電晶體是利用電場誘發載子形成通道一樣,此增強型高分子OTFT是利用電場控制通道參雜程度,也確實呈現出電晶體特性,其場效遷移率為0.085 cm2/Vs,開關電流比為30。
    而在證實可透過參雜共軛高分子來製作增強型高分子OTFT之後,也以透過去參雜共軛高分子來製作空乏型高分子OTFT,其主動層材料為poly(ethyleneimine) (PEI) 和以poly(styrenesulfonate) (PSS)做參雜的共軛高分子((poly(3,4-ethylenedioxythiophene) (PEDOT)),poly(ethyleneimine) (PEI)會與PSS連結再透過電場從PEDOT移除PEI,而PSS也一併被移除,也等同對PEDOT做去參雜的動作,結果也確實呈現出空乏型高分子OTFT之特性,其場效遷移率為1.94cm2/Vs,開關電流比為103。
    氟化鋰通常當成是載子注入層運用於OLED,因其可以對銦錫氧化物(ITO)的功函數做調變,因此便應用氟化鋰做為電極緩衝層在以pentacene作為主動層的OTFT上,而加入緩衝層的OTFT也證實可比沒加入緩衝層的OTFT得到更佳的電性,而在1nm的氟化鋰插入在源極/汲極和主動層間上,其汲極電流和載子的場效遷移率分別增加超過6倍和4倍,而以7.5nm氟化鋰插入在閘極和隔離層間上,其汲極電流、載子的場效遷移率和開關電流比分別增加大約2倍、1.47倍及2.5倍。

    In recent years, organic semiconductors have attracted many researchers because of their attractive advantages such as low cost, easy processing, and ability to be fabricated on plastic substrates. They are applied in organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic solar cells, among others.
    This thesis is focused on studies on organic thin film transistor based on both polymers and small molecular. Organic semiconductors are divided into two categories, polymer and small molecular, according to molecular weight. In electric characteristics, the small molecular OTFTs show better performance than polymer OTFTs. However, polymer OTFTs exhibit advantage in processing comparing to small molecular OTFTs. A polymer thin film can be deposited by solution process, but the small molecular films must be evaporated.
    For the polymer OTFT study, the conjugated polymers are used as active materials in device fabrication. In 1970, Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa discovered that electric conductivity of conjugated polymers can be enhanced by doping mechanism. They were awarded the Nobel Prize in Chemistry for this discovery in 2000. According to their discovery, the enhancement-mode (E-mode) polymer OTFTs that included an active layer, conjugated polymer (Poly (diphenylamine) (PDPA)), and a buffer layer, polymer electrolyte (poly (diallyldimethylammonium chloride) (PDDA)), are fabricated. The doping process was carried out by doping chlorine anions from the polymer electrolyte to PDPA. The doping level is driven by the electric field between the gate and the source. This is similar to the operation of inorganic E-mode metal-oxide-semiconductor field effect transistor where the induced carrier level is modulated by the electric field. The polymer OTFT then exhibits E-mode transistor behavior. The field effect mobility and on/off ratio of this device are about 0.085 cm2/Vs and 30.
    The E-mode polymer OTFT has been demonstrated. The depletion-mode (D-mode) polymer OTFT is fabricated through dedop process of conjugated polymer, which is controlled by electric field. Poly(ethyleneimine) (PEI) and poly(3,4-ethylenedioxythiophene) (PEDOT) which is doped by poly(styrenesulfonate) (PSS), are used as the active material. In this mixture, PEI binds to PSS. PSS can remove PEDOT when PEI is removed by the electric field. This mechanism is similar to the dedop process of PEDOT. The polymer OTFT then exhibits D-mode transistor behavior. The field effect mobility and on/off ratio of this device are about 1.94 cm2/Vs and 103.
    Based on previous studies, the work function of indium tin oxide (ITO) can be modulated by lithium fluoride (LiF). Based on the concept described, LiF is used as the electrode buffer layer in pentacene-based OTFT in this thesis. It has been demonstrated that the electric performance of OTFT with LiF is better than that of one without LiF. After inserting a 1 nm-thick LiF between the source/drain electrodes and the active layer, the drain current and field effect mobility are enhanced six and four times, respectively. After inserting a 5 nm-thick LiF between the gate electrode and the insulator layer, the drain current, field effect mobility, and on/off ratio are enhanced 2, 1.47, and 2.5 times.

    ABSTRACT (Chinese) …………………………………………………..I ABSTRACT (English) ………………………………..………………...III CONTENTS …………………………………………..……………….VI FIGURE CAPTIONS ……………………………………………..…VIII TABLE CAPTION …………………………………………………….XI Chapter 1 Introduction 1.1 Organic semiconductors ………………………………………1 1.2 Organic Thin Film Transistors …………… ……………………3 1.3 Motivations……………………………………………………13 Chapter 2 Enhanced-mode Organic Thin Film Transistor 2.1 Doping Mechanism of Conjugated Polymer …………...……...16 2.2 The Fabrication of OTFTs Based on PDDA/PDPA …………...23 2.3 Modulation of PDPA Conductivity ………………………..25 Chapter 3 Depletion-mode Thin Film Transistor 3.1 Characteristics of Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) ………………………………………..39 3.2 Fabrication of PEDOT-PSS Based OTFTs …………………….40 3.3 Dedoping Mechanism of PEDOT-PSS ……………………….43 Chapter 4 Transparent Organic Thin Film Transistor 4.1 Transparent OTFTs …………………...……………………….56 4.2 The Fabrication of Transparent OTFT Based on Pentacene ………………………………………………………57 4.3 Work Function Modulation and Carriers tunneling in ITO/LiF/pentacene Structure…………………….…………..60 Chapter 5 Lithium Fluoride as Gate Dielectric Buffer Layer in Pentacene-based Organic Thin Film Transistor 5.1 Gate Dielectric Buffer Layer ………………………………….71 5.2 Device Fabrication …………..……………………………...72 5.3 Influence of OTFTs with Lithium Fluoride Buffer Layer……74 Chapter 6 Conclusions and Future Works Reference ………………………………………………………..……...89 Publication List………………………………………………………100

    1. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1985), pp. 133.
    2. M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).
    3. A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett. 49, 1210 (1986).
    4. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A. Heeger, “Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x,” J. Chem. Soc. Chem. Commun. 00, 578 (1977).
    5. G. Horowitz, D. Fichou, X.Z. Peng, Z.G. Xu, and F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Commun. 72, 381 (1989).
    6. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., 80, 1088 (2002).
    7. Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi, and Tatsuro Usuki, “Red organic light-emitting diodes using an emitting assist dopant,” Appl. Phys. Lett., 75, 1682 (1999).
    8. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett., 78, 841 (2001).
    9. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson,” Pentacene-based organic thin-film transistors”, IEEE Trans. Electron Devices, 44, 1325 (1997).
    10. R. M. Meixner, H. Göbel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider, “Wavelength-selective organic field-effect phototransistors based on dye-doped poly-3-hexylthiophene,” Appl. Phys. Lett., 89, 092110 (2006)
    11. D. Guo, K. Sakamoto, K. Miki, S. Ikeda, and K. Saiki, “Orientation control of pentacene molecules and transport anisotropy of the thin film transistors by photoaligned polyimide fil,” Appl. Phys. Lett., 90, 102117 (2007)
    12. M. Hamedi, R. Forchheimer and O. Ingana, ”Towards woven logic from organic electronic fibres,” Nat. Mater., 6, 357 (2007).
    13. D. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed Organic and Molecular Electronics, (Springer press, 2004) pp.357.
    14. H. E. Katz, “Organic Molecular Solids as Thin Film Transistor Semiconductors,” J. Mater. Chem., 7, 369 (1997).
    15. C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances,” IBM J. Res. Dev., 45, 11 (2001).
    16. Z. Bao, J. Locklin, and J. J. Locklin, Organic Field-effect Transistors, (Taylor and Francis, 2007), p.87.
    17. J. Singleton, Band Theory and Electronic Properties of Solids, (Oxford University Press, 2001), p130.
    18. T. P. McAndrew, TRIP., 5, 7(1997)
    19. F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH Publications, New York, 1991).
    20. T. T. Wooster, M. L. Longmire, H. Zhang, M. Watanabe, and R. W. Murray, “Experimental aspects of solid-state voltammetry,” Anal. Chem., 64, 1132 (1992).
    21. S. Chao, and M. S. Wrighton, “Solid-state microelectrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on Poly(3-methylthiophene) ,” J. Am. Chem. Soc., 109, 2197 (1987).
    22. D. R. Talham, R. M. Crooks, V. Cammarata, N. Leventis, M. O. Schloh, and M. S. Wrighton, NATO ASI Ser., Ser. B 248, 627 (1990).
    23. H. Benisty, and J. N. Chazalviel, “Electrochemical field effect as a probe of double-layer dynamics,” J. Electrochem. Soc., 140, 1949 (1993).
    24. C. Lu, Q. Fu, S. Huang, and J. Liu, “Polymer electrolyte-gated carbon nanotube field-effect transistor,” Nano Lett., 4, 623 (2004).
    25. G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly efficient gating and doping of carbon nanotubes with polymer electrolytes,” Nano Lett., 4, 927 (2004).
    23 M. J. Panzer, C. R. Newman, and C. D. Frisbie, “Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric,” Appl. Phys. Lett., 86, 103503 (2005).
    24 M. Kruger, M. R. Buitelaar, T. Nussbaumer, C. Schonenberger and L. Forro, “Electrochemical carbon nanotube field-effect transistor,” Appl. Phys. Lett., 78, 1291 (2001).
    25 S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova and P. L. McEuen, “High performance electrolyte gated carbon nanotube transistors,” Nano Lett., 2, 869 (2002).
    26 A. R. Brown, D. M. Deleeuw, E. E. Havinga, and A. Pomp, “A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors,” Synth. Met., 68, 65 (1994).
    27 D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth, and M. Berggren, “Bistable and Dynamic Modulation in Organic Electrochemical Transistors,” Adv. Mater., 14, 51 (2002).
    28 M. Chen, D. Nisson, T. Kugler, and M. Berggren, “Electric current rectification by an all-organic electrochemical device,” Appl. Phys. Lett., 81, 2011 (2002).
    29 M. S. Wu, T. C. Wen and A. Gopalan, “Electrochemical copolymerization of diphenylamine and anthranilic acid with various feed ratios,” J. Electrochem. Soc., 148, D65 (2001).
    30 C. F. Chang, W. C. Chen, T. C. Wen and A. Gopalan, “Electrochemical and spectroelectrochemical studies on copolymerization of diphenylamine with 2,5-Diaminobenzenesulfonic acid,” J. Electrochem. Soc., 149, E298 (2002).
    31 C. H. Chen, J. Shi, and C. W. Tang, “Recent developments in molecular organic electroluminescent materials,” Macromol. Symp., 125, 1 (1997); S. A. VanSlyke, and C. W. Tang, U. S. Patent No. 5. 061 569, 1991; C. Adachi, K. Nagai, and N. Tamoto, “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes,” Appl. Phys. Lett., 66, 2679 (1995).
    32 C. Giebler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, “Influence of the hole transport layer on the performance of organic light-emitting diodes,” J. Appl. Phys., 85, 608 (1999); S. Tokito, H. Tanaka, N. Koda, A. Okada, and Y. Taga, “Thermal stability of organic electroluminescent devices fabricated using novel charge transporting materials,” Macromol. Symp., 125, 181 (1997).
    33 G. Horowitz, “Field-effect transistors based on short organic molecules,” J. Mater. Chem., 9, 2021 (1999)
    34 G. Horowitz, P Lang, M Mottaghi, and H Aubin, “Extracting parameters from the current-voltage characteristics of organic field-effect transistors,” Adv. Funct. Mater., 14, 1069 (2004).
    35 G. Horowitz, R. Hajlaoui, D. Fichou, and A. E. Kassmi, “Gate voltage dependent mobility of oligothiophene field-effect transistors,” J. Appl. Phys., 85, 15, (1999).
    36 C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising High Dielectric Constant Gate Insulators,” SCIENCE, 283, 822, (1999).
    37 S. Shaked, S. Tal, Y. Roichman, A. Razin, S. Xiao, Y. Eichen, and N. Tessler, “Charge Density and Film Morphology Dependence of Charge Mobility in Polymer Field-Effect Transistors,” Adv. Mater., 15, 913, 2003.
    38 C. Tanase, P. W. M. Blom,, D. M. de Leeuw, and E. J. Meijer, “Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene),” phys. stat. sol., 201, 1236 (2004).
    39 P.V. Necliudov, M.S. Shur, D.J. Gundlach, and T.N. Jackson, “Modeling of organic thin film transistors of different designs,” J. Appl. Phys. 88, 6594 (2000).
    40 S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1985), pp. 29.
    41 H. Aziz, Z. Popovic, C. Tripp, N. X. Hu , A. M. Hor, , and G. Xu, “Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes,” Appl. Phys. Lett., 72, 2642 (1998).
    42 Y. Qie, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, “H2O effect on the stability of organic thin-film field-effect transistors,” Appl. Phys. Lett., 83, 1644 (2003).
    43 V. Saxena, V. Shirodlkar, and R. Prakash, “A comparative study of a polyindole-based microelectrochemical transistor in aqueous and non-aqueous electrolytes,” J. Solid State Electrochem., 4, 231 (2000).
    44 J. W. Thackeray, H. S. White, and M. S. Wrighton, “Poly (3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using Poly (3-methylthiophene)-based microelectrochemical transistor,” J. Phys. Chem., 89, 5133 (1985)
    45 A.J. Epstein, F.C. Hsu, N.R. Chiou, and V.N. Prigodin, “Electric-field induced ion-leveraged metal–insulator transition in conducting polymer-based field effect devices,” Curr. Appl. Phys., 2, 339 (2002).
    46 S. Ashizawa, Y. Shinohara, H. Shindo, Y. Watanabe, and Y. Okuzaki, “Polymer FET with a conducting channel,” Synthetic Met., 153, 41 (2005).
    47 M.S. Lee, H.S. Kang, H.S. Kang, J. Joo, A.J. Epstein, and J.Y. Lee, “Flexible all-polymer field effect transistors with optical transparency using electrically conducting polymers,” Thin Solid Films, 477, 169 (2005).
    48 A. C. Arias, F. Endicott, and R. A. Street, “Surface-Induced Self-Encapsulation of Polymer Thin-Film Transistors,” Adv. Mater., 18, 2900, (2006).
    49 Y. Kuo, Thin Film Transistors Materials and Processes Volume 1: Amorphous Silicon Thin Film Transistors (Kluwer Academic, Boston, 2004), Chap. 3.
    50 I. Chan and A. Nathan, “Amorphous silicon thin-film transistors with 90° vertical nanoscale channel,” Appl. Phys. Lett., 86, 253501 (2005).
    51 T. Takenobu, T. Takahashi, T. Tsukagoshi, Y. Aoyagi, and Y. Iwasa, “High-performance transparent flexible transistors using carbon nanotube films,” Appl. Phys. Lett., 88, 033511 (2006).
    52 J. M. Choi, D. K. Hwang, J. H. Kim, and S. Im, “Transparent thin-film transistors with pentacene channel, AlOx gate, and NiOx electrodes,” Appl. Phys. Lett., 86, 123505 (2005).
    53 J. Lee, D. K. Hwang, J.-M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, “Flexible semitransparent pentacene thin-film transistors with polymer dielectric layers and NiOx electrodes,” Appl. Phys. Lett., 87, 023504 (2005).
    54 L.S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., 70, 152 (1996).
    55 F. Zhu, B. Low, K. Zhang, S. Chua, “Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices,” Appl. Phys. Lett., 79, 1205 (2001).
    56 J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes,” Appl. Phys. Lett., 84, 2913 (2004).
    57 T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, ” Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett., 75, 1679 (1999).
    58 Y, Watanabe, and K. Kudo, “Flexible organic static induction transistors using pentacene thin films,” Appl. Phys. Lett., 87, 223505 (2005).
    59 K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, “Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes,” Appl. Phys. Lett., 92, 023305 (2008).
    60 T. Yasuda, T. Goto, K. Fujita, and T. Tsutui, “Ambipolar carrier transport in polycrystalline pentacene thin-film transistors,” Mol. Cryst. Liq. Cryst. 444, 219 (2006).
    61 S. H. Choi, S. M. Jeong, W. H. Koo, and H. K. Baik, “Fabrication of organic electroluminescence device with ion beam-assisted deposition of ultrathin lithium fluoride as a hole injection layer,” Jan. J. Appl, Phys., 44, L603 (2005).
    62 S. Luan, and G. W. Neudeck, “An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors,” J. Appl. Phys., 72, 766 (1992).
    63 J. Zaumseil, K. W. Baldwin, and J. A. Rogers, “ Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination,” J. Appl. Phys., 93, 6117, (2003).
    64 Y. Zhao, S.Y. Liu and J.Y. Hou, “Effect of LiF buffer layer on the performance of organic electroluminescent devices,” Thin Solid Films, 397, 208 (2001).
    65 H. Sakai, Y. Takahashi and H. Murata, “Organic field effect transistors with dipole-polarized polymer gate dielectrics for control of threshold voltage,” Appl. Phys. Lett., 91, 113502 (2007).
    66 J. Zhou, K. Yang, J. Zhou, Y. Liu, J. Peng and Y. Cao, “Poly(3-hexylthiophene) Thin-Film Transistors with Dual insulator Layers,” Jan. J. Appl. Phys., 46, 913 (2007).
    67 S. M. Sze, Physics of semiconductor Devices, 2nd ed. (Wiley, New York, 1981), pp.438-445.
    68 F. Bernardini, and V. Fiorentini, “Electronic dielectric constants of insulators calculated by the polarization method,” Phys. Rev. B, 58, 15292, (1998).
    69 M. Halik, H. Klauk, U. Zschieschang, T. Kriem, G. Schmid, and W. Radlik, “Fully patterned all-organic thin film transistors,” Appl.Phys. Lett., 81, 289, (2002).
    70 H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., 92, 5259, (2002).

    下載圖示 校內:2009-09-10公開
    校外:2010-09-10公開
    QR CODE