| 研究生: |
鄭祺霖 Cheng, Chi-Lin |
|---|---|
| 論文名稱: |
利用超臨界二氧化碳電鍍法於高深寬比奈米孔洞進行銅金屬沉積之研究 Supercritical carbon dioxide electrodeposition for metal filling into high aspect ratio nano holes |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 陽極氧化鋁 、高深寬比 、乳化超臨界二氧化碳 、電沉積 |
| 外文關鍵詞: | copper deposition, high aspect ratio nano-hole, supercritical carbon dioxide, anodic aluminum oxide |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多孔陽極氧化鋁陣列進行定電位電沉積並針對三種製程-常壓製程、超臨界二氧化碳製程及乳化超臨界二氧化碳製程進行評估。首先,多孔陽極氧化鋁模板是以兩階段陽極處理法(Two-step)於草酸中以低溫定電壓中製成,於此法下成長出的陣列具有高規則度、筆直及高深寬比之結構。陽極處理後配合適當的基材及阻絕層(Barrier layer)移除程序以製備雙孔型陽極氧化鋁模板。接著將模板固定於工作電極並利用上述的三種製程中進行定電位電沉積。結果顯示乳化超臨界二氧化碳製程下,因超臨界流體低表面張力、高質量傳輸使其與常壓製程相比具有近快兩倍的沉積速率。此外,因乳化超臨界二氧化碳與氫氣的高溶解度,使得乳化超臨界二氧化碳製程在電沉積的同時能避免氫氣於孔洞中還原所產生的阻礙,唯另一沉積速率較快的原因。
本研究尚繼續延伸探討陽極氧化鋁內部及表面官能基及模板結構於三種製程下的影響。將製備完成的陽極氧化鋁置於真空加熱爐中以300 oC、600 oC及860 oC中進行熱處理24小時。結果發現於300 oC起熱處理的結果便能改變因陽極處理而滲入的氫氧基含量,至860 oC便能移除因陽極處理而滲入的草酸根離子,同時於此溫度下的陽極氧化鋁內部結構有交互擴散甚至封孔的情形發生。於熱處理後的模板利用三種製程中進行電沉積,結果顯示於300 oC、600 oC熱處理後的模板中進行電沉積並無明顯差異;然而,於860 oC熱處理後的模板中進行電沉積發現唯乳化超臨界二氧化碳製程能於模板底部進行填充電鍍,顯示經高溫熱處理表面改質後模板結構對於一般電沉積具有影響,而在此條件下乳化超臨界二氧化碳製程仍能進行填充電鍍,顯示其趨近於零之表面張力及高質量傳輸於此條件下仍能保持其高滲透性於高深寬比之結構中進行填充。
Electrochemical copper deposition in high aspect ratio nano-holes formed in anodic aluminum oxide(AAO) membranes was attempted by employing an emulsified supercritical carbon dioxide (scCO2) bath, in comparison with that performed using conventional process at ambient pressure. The AAO membrane with a thickness about 5 µm contained nano-holes with an average pore size of 30 nm and an aspect ratio around 150. Copper deposition in 40 vol% scCO2 bath at 50 oC and 10 MPa was conducted under constant potential condition. The effectiveness of copper filling into the nano-holes was evaluated by employing transmission electron microscopy(TEM) coupled with energy-dispersive X-ray spectroscopy(EDS), with the aid of Focused ion Beam (FIB) for samples preparation. The experimental results showed that copper filling into a high aspect ratio nano-holes employing scCO2 bath was more effective than that of conventional process at ambient pressure, as far as the depth and uniformity were concerned.
1. Cornelius T. Leondes, MEMS/NEMS Handbook Techniques and Applications, Springer US,2006.
2. Cerrina F and Marrian C 1996 MRS Bull. 21 56.
3. H.Choi and S. Park, Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition, J. Am. Chem. Soc., vol. 126, pp.6248-6249, 2004.
4. Gyu-Chul Yi, Semiconductor Nanostructures for Optoelectronic Devices, Springer-Verlag Berlin Heidelberg.
5. J. Sarkar, G.G Khan and AbasuMallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template, Bull. Mater. Sci., vol. 30, pp.271-290, 2007.
6. Z.Wang, M.Brust, Fabrication of nanostructure via self-assembly of nanowires within the AAO template, Nanoscale Res Lett, vol. 2, pp. 34-39, 2007.
7. T.Gao, G.Meng, Y.Wang, S.Sun and L.Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter, vol.14, pp.355-363, 2002.
8. T.Chowdhury, D.P. Casey, J.F. Rohan, Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates, Electrochemistry Communications, vol.11, pp.1203-1206, 2009.
9. C. Li, J.Yang, W.Tsai, C.Lin, T. Chang, M. Sone, High aspect ratio micro-hole filling employing emulsified supercritical CO2 electrolytes, J. of Supercritical Fluids, vol.109, pp.61–66, 2016.
10. S. Chung, H.Huang , S.Pan , W.Tsai , P. Lee , C.Yang , M. Wu, Material characterization and corrosion performance of nickel electroplated in supercritical CO2 fluid, Corrosion Science, vol. 50,pp. 2614-2619, 2008.
11. G.E.J.Poinern, N. Ali, and D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials, vol. 4, pp.487-526, 2011.
12. H.Masuda, K.Nishio,M.Adachi and D.J.Lockwood, Self-organized Nanoscale Materials, (2006), Springer Science+Business Media, Inc.
13. J.Qin, J.Nogues, M.Mikhaylova, A.Roig, J.S.Munoz and M.Muhammed, Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in anodized alumina templates, Chem. Mater., vol.17 ,pp.1829-1834, 2005.
14. J. Li, J.Jia, X.Liang, X.Liu, J.Wang, Q.Xue, Z. Li, J.S.Tse, Z.Zhang, and S. B. Zhang, Spontaneous Assembly of perfectly ordered identical size nanocluster arrays. Phys. Rev. Lett., vol.88, pp.066101:1-066101:4, 2002.
15. S.Ju, A. Facchetti., Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C Zhou, T. J. Marks and D. B. James, Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol., vol.2, pp.378 – 384, 2007.
16. M. Karlson, Nano-Porous Aluminia, a Potential Bone Implant Coating. Comprehensive Summaries of Uppsala Dissertations,The Faculty Of Science And Technology, Acta Universitatis Upsaliensis, Kiruna ,997, 2004.
17. L.G. Parkinson, N.L.Giles, K.F. Adcroft, M.W.Fear, F.M. Wood, and G.E.Poinern. Tissue Engineering Part A, vol.15, pp.3753-3763, 2009.
18. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, Z.T. Jiang, Nanoengineering a biocompatible inorganic scaffold for skin wound healing, J. BioMed. Nanotech, vol.6, pp. 497-510, 2010.
19. O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. ,vol. 72, pp. 1173-1175, 1998.
20. T. P. Hoar and J. Yahalom, The initiation of pores in anodic oxide films formed on aluminium in acid solutions, J. Electrochem. Soc., vol.110, pp. 614-621, 1963.
21. O'Sullivan, J.P. and Wood, G.C., The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum , Proc. Roy. Soc. Lond. A, vol. 317,pp. 511-543, 1970.
22. A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic aluminaJ. Appl. Phys., vol.84, pp.6023-6026, 1998.
23. F.Li, L.Zhang, and R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide ,Chem. Mater., vol. 10, pp. 2470-2480, 1998.
24. Grzegorz D. Sulka, Nanostructured Materials in Electrochemistry,(2008), Wiley-VCH Verlag GmbH & Co. KGaA.
25. A. Belwalkar, E. Grasing, W. V.Geertruyden, Z. Huang, and W.Z. Misiolek, Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes, J Memb Sci. ,vol.319, pp.192-198, 2008.
26. M. Ghorbani , F. Nasirpouri , A. Iraji zad, A. Saedi, On the growth sequence of highly ordered nanoporous anodic aluminium oxide, Materials and Design, vol.27, pp.983-988 ,2006.
27. J.Zhang, J.E. Kielbasa, D. L. Carroll, Controllable fabrication of porous alumina templates for nanostructures synthesis, Materials Chemistry and Physics , vol. 122, pp. 295-300, 2010.
28. I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi and D. Erts, Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages, Materials Science and Engineering , vol. 23, pp.012-025 ,2011.
29. Terry T. Xu, Richard D. Piner, and Rodney S. Ruoff, An Improved Method To Strip Aluminum from Porous Anodic Alumina Films, Langmuir, vol.19, pp.1443–1445, 2003.
30. J. Cui, Y.Wu, Y.Wang, H.Zheng, G.Xu, X.Zhang, A facile and efficient approach for pore-opening detection of anodic aluminum oxide membrane, Applied Surface Scienc, vol. 258, pp.5305-5311, 2012.
31. N. Itoh , K. Kato , T. Tsuji , M. Hongo, Preparation of a tubular anodic aluminum oxide membrane, Journal of Membrane Science , vol.117,pp.189-196, 1996.
32. L.Padrela, M. A. Rodrigues , S. P. Velaga , A.C. Fernandes , H. A. Matos , E.G.d.Azevedo, Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process, J. of Supercritical Fluids, vol.53, pp.156–164, 2010.
33. 談駿嵩,超臨界流體的應用,科學發展, 第359期, 2002年.
34. S.Kaneshima, O.Shibata, M.Nakamura, Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons , Bulletin of the Chemical Society of Japan, vol.52, pp.42-44, 1979.
35. Y.Einaga, Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers, Polymer Journal, vol. 39 ,pp.1082-1083, 2007.
36. C.Wu , J.Huang , Y.Wen, S.Wen, Y.Shen, M.Yeh, Preparation of TiO2 nanoparticles by supercritical carbon dioxide, Materials Letters, vol.62 ,pp.1923-1926, 2008.
37. H. Ohde, F.Hunt, and C. Wai, Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion, Chem. Mater. ,vol.13, pp.4130-4135, 2001.
38. R. G. Zielinski, S. R. Kline, E. W. Kaler, and N. Rosov, A Small-Angle Neutron Scattering Study of Water in Carbon Dioxide Microemulsions, Langmuir, vol.13, pp. 3934-3937 ,1997.
39. E.Reverchon, G.Caputo , S.Correra , P.Cesti, Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale, J. of Supercritical Fluids ,vol.26, pp.253-261, 2003.
40. L. Zhou, S.Wang, H.Ma, S.Ma, D.Xu, Y.Guo, Size-controlled synthesis of copper nanoparticles in supercritical water, chemical engineering research and design ,vol. 98, pp.36-43, 2015.
41. X.Ye, Y.Lin, C.Wang, and C.Wai, Supercritical fluid fabrication of metal nanowires and nanorods template by multiwalled carbon nanotubes, Adv. Mater, vol.15, pp.316-319, 2003.
42. S.Piazza, C.Sunseri, R. Inguanta, Influence of the electrical parameters on the fabrication of copper nanowires into anodic alumina templates, Applied Surface Science, vol. 255,pp. 8816-8823, 2009.
43. G. Yue, G.Meng , Q.Xu, B.Chen, M.Fang, Manipulation of crystalline orientation and optical absorption of Cu nanowire arrays embedded in anodic aluminum oxide templates, Materials Lettes, vol. 63, pp. 998-1000 ,2009.
44. S.Kumar, D.Saini , G. S.Lotey , N.K. Verma, Electrochemical synthesis of copper nanowires in anodic alumina membrane and their impedance analysis, Superlattices and Microstructures ,vol.50,pp. 698-702, 2011.
45. N.Shinoda, T. Shimizu, T. Chang, A.Shibata, M.Sone, Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles, Microelectronic Engineering, vol. 97,pp. 126-129, 2012.
46. N.Shinoda, T.Shimizu, T.Chang, A.Shibata, M.Sone, Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles, Thin Solid Films, vol.529,pp. 29-33, 2013.
47. 楊竣傑,以乳化超臨界二氧化碳流體進行高深寬比奈米孔洞填充之研究,2015.
48. H.Chuang, G.Hong, J.Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing , vol.45, pp.17-26, 2016.
49. W.Tsai, S.Chung, Electrodeposition of high phosphorus Ni–P alloys in emulsified supercritical CO2 baths, J. of Supercritical Fluids, vol.95, pp. 292-297, 2014.
50. K.Itaya, S. Sugawara, K.Arai and S.Saito, Properties of anodic aluminum oxide films as membrane, Journal of Chemical Engineering of Japan, vol. 17, pp.514-520, 1984.
51. J. P. O' Sullivan, J. A. Hockey and G. C. Wood, Infra-Red Spectroscopic Study of Anodic Alumina Films, Trans. Faraday Soc., vol. 65, pp. 535-541,1969.
52. Z.Su and W.Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Adv. Mater., vol.20, pp.3663–3667, 2008.
53. J. Cerezo, P. Taheri, I. Vandendael, R. Posner , K. Lill , J.H.W. de Wit , J.M.C.Mol, H. Terryn, Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy, Surface & Coatings Technology, vol.254, pp. 277-283, 2014.
54. M.E. Mata-Zamora and J.M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, REVISTA MEXICANA DE FI´SICA , vol.51, pp.502-509, 2005.
55. G.Xiong, J.W. Elam, H.Feng,|C.Y. Han, H.Wang, L.E. Iton, L.A. Curtiss, M.J. Pellin, M.Kung,|H. Kung, and P.C. Stair, Effect of Atomic Layer Deposition Coatings on the Surface Structure of Anodic Aluminum Oxide Membranes, J. Phys. Chem. B, vol.109,pp. 14059-14063, 2005.
56. P.P. Mardilovicha, A.N. Govyadinovb, N. I. Mukhurovb,A.M. Rzhevskiic, R.Paterson, New and modified anodic alumina membranes Part I. Thermotreatment of anodic alumina membranes, Journal of Membrane Science, vol.98, pp. 131-142, 1995.
57. W. Leitner, Green chemistry:Designed to dissolve, Nature, vol.405, pp.129-130, 2000.
58. F.P. Lucien, N.R. Foster, P.G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids ,WILEY-VCH Verlag GmbH, 1999.
59. K. L. Toews, R.M. Shroll, C.M. Wai, and N.G. Smart, pH-Defining Equilibrium between water and supercritical CO2 Influence on SFE of organics and metal Chelates, Analytical Chemistry, vol.67,pp.4040-4043,1995
60. O.E. Kongstein, G. M. Haarberg, and J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density ,pH and temperature, Journal of Applied Electrochemistry, vol. 37, pp. 669- 674, 2007.
61. L. Devetta, A. Giovanzana, P. Canu, A. Bertucco, and B. J. Minder, Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2, Catalysis Today, vol.48, pp.337-345, 1999.
62. H. S. Phiong, F.P. Lucien, and A.A. Adesina, Three-phase catalytic hydrogenation of α-methylstyrene in supercritical carbon dioxide, The Journal of Supercritical Fluids, vol. 25, pp.155-164, 2003