簡易檢索 / 詳目顯示

研究生: 曾芸涵
Tseng, Yun-Han
論文名稱: 結合情緒分析與眼球追蹤之智慧電影推薦系統
Intelligent Movie Recommendation System Integrating Emotion Analysis and Eye-Tracking
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 67
中文關鍵詞: 情緒辨識影像辨識眼球追蹤推薦系統深度學習人工智慧
外文關鍵詞: Emotion Recognition, Image Recognition, Eye-Tracking, Recommendation System, Deep Learning, Artificial Intelligence (AI)
ORCID: 0009-0004-9934-8767
相關次數: 點閱:18下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在設計與加強一套融合臉部情緒識別與眼球追蹤技術的智慧型電影推薦系統,藉此解決傳統推薦系統在即時情感反饋與使用者注意力分布考量上的不足。相較於僅依賴使用者的觀看歷史與偏好,本系統引入基於臉部表情分析的情緒辨識,並結合眼動及眼距的資料來捕捉使用者在觀影過程中的注意力焦點與感受深度,進一步提升推薦的準確性與個人化程度。
    系統透過攝影機或預錄之觀影反應影片,運用深度學習模型即時分析使用者的情緒變化(如喜悅、悲傷、驚訝、憤怒等),並同步擷取眼球移動軌跡、注視點與注視時間等資訊。這些視覺與情緒資料將被量化為情感評分與注意力指標,作為推薦演算法的關鍵輸入,進而生成兼顧使用者歷史偏好、當下情緒狀態與視覺參與度的個性化電影推薦。
    本系統將動態情感反應與視覺注意力同步納入推薦模型中,希望能強化推薦內容與使用者心理狀態的匹配程度,亦進一步改善整體觀影體驗與滿意度。

    This study aims to design an intelligent movie recommendation system that integrates facial emotion recognition and eye-tracking technologies, addressing the limitations of traditional recommendation systems in capturing real-time emotional feedback and user attention. Unlike conventional methods that rely solely on viewing history and preferences, our approach incorporates facial expression-based emotion analysis and gaze data to better understand users’ emotional responses and visual engagement during movie watching, thereby enhancing recommendation accuracy and personalization.
    The system utilizes a camera or pre-recorded viewer footage to capture users’ emotional reactions in real-time using deep learning models, identifying emotions such as joy, sadness, surprise, and anger. Simultaneously, it tracks eye movements, fixation points, and gaze duration to evaluate the user’s attention focus and engagement level. These emotional and visual data are then quantified into emotion scores and attention indicators, serving as key inputs to the recommendation algorithm. As a result, the system generates personalized movie recommendations that reflect not only user's historical preferences but also their real-time emotional states and attention patterns.
    The innovation of this system lies in its ability to incorporate dynamic emotional reactions and visual attention into the recommendation process, thereby improving the alignment between recommended content and user's psychological states, while also enhancing the overall viewing experience and satisfaction.

    摘要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XIV 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 2 2 第二章 情緒辨識與眼球追蹤技術基礎 5 2.1 臉部表情辨識原理 5 2.1.1 表情特徵提取方法 6 2.1.2 表情分類模型與準確率分析 6 2.2 眼球追蹤技術原理 9 2.2.1 臉部關鍵點偵測 9 2.2.2 注視點計算與移動偵測 10 2.2.3 眼球偵測缺失與資料品質控管 12 2.2.4 系統整合與視覺回饋 12 2.3 多模態情緒資料融合技術 13 2.3.1 臉部表情情緒分析(Facial Emotion Recognition) 14 2.3.2 眼球移動與注視行為評估(Eye Movement & Attention) 15 2.3.3 權重式融合模型(Weighted Fusion) 15 3 第三章 推薦系統相關技術 17 3.1 推薦系統概述 17 3.2 資料處理與整合 18 3.2.1 資料集載入與預處理 19 3.2.2 資料合併 19 3.2.3 資料索引轉換 20 3.3 協同過濾推薦模型設計 21 3.3.1 模型架構設計 21 3.3.2 損失函數與最佳化策略 21 3.3.3 模型訓練參數設定 22 3.4 推薦生成流程 22 4 第四章 系統設計與方法 24 4.1 系統整體架構 24 4.2 臉部情緒辨識模組設計 25 4.2.1 人臉偵測與情緒分析 25 4.2.2 情緒加權評分計算 26 4.2.3 多臉與無臉處理 27 4.2.4 模組整合與輸出 27 4.3 注視行為量化與專注度評估模組 28 4.4 多模態偏好加權機制設計 29 4.5 協同過濾推薦模型整合 29 4.6 系統流程實作與整合說明 30 5 第五章 實驗設計與結果分析 32 5.1 實驗平臺與工具 32 5.2 實驗流程與資料集介紹 33 5.2.1 實驗流程 33 5.2.2 使用資料集介紹 34 5.3 評估指標 35 5.4 多模態與傳統推薦系統之比較探討 42 5.5 模組效能分析 43 5.6 即時性分析 44 6 第六章 結論與未來展望 46 6.1 研究總結 46 6.2 系統優勢與限制說明 46 6.3 未來可能改進方向 48 6.4 未來展望 49 參考文獻 50

    [1] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer, 42(8), 30–37.
    [2] Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191–198).
    [3] Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2017). AffectNet: A database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 10(1), 18–31.
    [4] Ng, H. W., & Winkler, S. (2014). A data-driven approach to cleaning large face datasets. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP) (pp. 343–347).
    [5] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499–1503.
    [6] Pu, Q., & Hu, B. (2017). A hybrid recommendation system for movies based on collaborative filtering. Journal of Computer Applications, 37(2), 47–52.
    [7] MovieLens Dataset. (n.d.). GroupLens. https://grouplens.org/datasets/movielens/
    [8] Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), 19:1–19:19.
    [9] Jain, P. P., Patil, Y. D., & Pawade, Y. (2023). Music and movie recommendation through emotion detection. International Journal of Novel Research and Development (IJNRD), 8.
    [10] Joel, J. S., Thompson, B. E., Thomas, S. R., Kumar, T. R., Prince, S., & Bini, D. (2023). Emotion based music recommendation system using deep learning model. In 2023 International Conference on Inventive Computation Technologies (ICICT).
    [11] Patel, A. A., & Dharwa, J. N. (2016). An integrated hybrid recommendation model using graph database. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG).
    [12] Manju, M. T., Jayashakthi, R., Nivethitha, R., & Lavanya, P. (2023). User-centric emotion modeling for next-generation recommender system. In 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering.
    [13] OXXO.STUDIO. (2021–2024). Python 情緒分析入門. https://steam.oxxostudio.tw/category/python/ai/aiemotion.html#a1
    [14] OpenCV. (2022, November 17). opencv/data/haarcascades. https://github.com/kipr/opencv/tree/master/data/haarcascades
    [15] Al-Omair, O. M. (2023). Incorporating eye-tracking and facial expression recognition for preference prediction in recommender systems. In 2023 3rd International Conference on Computing and Information Technology (ICCIT).
    [16] OXXO.STUDIO. (2021–2024). AI 臉部辨識教學. https://steam.oxxostudio.tw/category/python/ai/ai-face-dectection.html
    [17] GroupLens. (2018, September). MovieLens Latest Datasets (ml-latest-small.zip). https://grouplens.org/datasets/movielens/latest/
    [18] Pinterest. (n.d.). A general representation of training a Haar classifier. https://nl.pinterest.com/pin/39969515412911329/
    [19] HackMD. (n.d.). AdaBoost classifier. https://hackmd.io/@yillkid/H1eMbtjZD
    [20] SpencerPao (YouTube). (2021, May 24). Building a Recommendation System in Python [Video]. https://reurl.cc/qG406y
    [21] Ho, A. T., Menezes, I. L. L., & Tagmouti, Y. (2006). E-MRS: Emotion-based movie recommender system. In Proceedings of the IADIS e-Commerce Conference, University of Washington Bothell, USA (pp. 1–8).
    [22] Pixabay. (n.d.). Sleep, messy bed at night, wake up on pillow [Video]. Pixabay. https://pixabay.com/videos/sleep-messy-bed-night-wake-pillow-42966/
    [23] Liao, T. L., Hou, Y. Y., & Tseng, Y. H. (2024). Movie Recommendation System Based on Facial Emotion Recognition. In Proceedings of the 2024 IEEE International Conference on Future Machine Learning and Data Science (FMLDS 2024) (pp. 141–146). IEEE.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE