簡易檢索 / 詳目顯示

研究生: 葉一中
Ya, Yi-jung
論文名稱: 散裝海運運價指數與原物料價格預測模型之研究
A Forecasting Model of Dry Bulk Freight Rate Index with Raw Materials Prices
指導教授: 張瀞之
Chang, Ching-chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 51
中文關鍵詞: MAPE散裝航運X12H-P濾波非線性
外文關鍵詞: dry bulk, MAPE, nonlinear, H-P filter, X12
相關次數: 點閱:64下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來波羅的海散裝運價指數波動劇烈,尤其是2007年與2008年,指數自2007年2月之4219點攀升至11月之11039點之歷史新高,漲幅高達161%,但旋即在2008年11月跌至891點,跌幅達92%。過去幾年因全球經濟成長,工業與農業用之原物料呈現供不應求狀態,因此漲聲不斷。因散裝船噸與原物料供需失衡,導致運費與原物料價格波動劇烈,因此,本研究利用原物料價格建構預測運費指數模型,本模型將可提供建議給散裝市場相關之利害關係人以利其制定相關政策來規避風險或有效降低投資風險或營運成本。本論文利用原物料價格為變數來建構預測運費指數之模型,不僅預測波羅的海運價指數(BDI)也預測了BCI,BPI以及BSI,研究期間自2003年1月至2007年12月,研究方法採用了X12,H-P,MAXR以及非線性,本研究亦採用MAPE來判斷預測模型之配適度是否良好。
    根據實證研究顯示,在本研究期間內,每一個預測模型之顯著變數皆為鐵礦砂,因此本論文採用鐵礦砂來建構非線性模型並預測散裝航運運價指數。在模型預測能力之驗證方面,根據平均絕對誤差百分比MAPE(mean absolute percentage error)之顯示,本文所建立之預測模型其值皆低於10%,為良好之預測模型,是故,本論文建構之模型為一穩健之預測模型可提供預測散裝航運運價指數,並可幫助相關使用者因利用此模型而達避險或營運或投資規劃之參考。

    In recent years, tramp shipping has had a high level of volatility in the dry bulk market. From February 2007 to November 2008, the Baltic Dry Index (BDI) rose 161 percent from 4219 to a historical high of 11039. But the index dropped to 891 in November 2008, record a loss of 92% in a year. Over the past few years due to the global economic growth, most commodities have presented shortage. Therefore, their prices are also reaching their peak. As a result of excess demand, the freight rate and raw materials prices has a high level of volatility. Hence this paper would construct prediction models with raw materials prices, it might provide the suggestions for the stakeholders that relate with the dry bulk market to make policy to avoid risk or reduce costs. The purpose of this study is not only using the price of raw materials prices to predict the dry bulk freight rate index but also BCI, BPI and BSI over the period January 2003 to December 2007 using X12, H-P filter, maximum R-square improvement (MAXR), nonlinear for predicting models with different freight rate (BDI, BCI, BPI and BSI). This research also introduces mean absolute percentage error (MAPE) values as a criterion to judge the model’s fitness in the different prediction models.
    The empirical results of those models show iron ore as the significant variable in this paper during the research period. Therefore, this paper adopts the iron ore to construct nonlinear models and predict dry bulk freight rate indexes. It also shows all the mean absolute percentage error (MAPE) values are below 10%. According to the MAPE value, it clearly shows these prediction models could be robust to predict the freight rate indexes and it also could provide useful information for stakeholders to avoid opera risk or deal their asset by portfolio.

    TABLE OF CONTENTS I LIST OF TABLES II LIST OF FIGURES III CHAPTER 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Purpose 4 1.3 Research Procedure 4 CHAPTER 2 LITERATURE REVIEW 7 2.1 Seasonal Adjustment with X12 7 2.2 Hodrick-Prescott (HP) Filter Method 8 2.3 Maximum R-square Improvement 10 CHAPTER 3 METHODOLOGY 12 3.1 Data Collection 12 3.2 Time Sseries 12 3.3 X12 Time Series Decomposition 14 3.4 Hodrick-Prescott Filter Method 17 3.5 Regression Model – Maximum R-square Improvement (MAXR) 18 3.6 Nonlinear Model 19 3.7 The Mean Absolute Percentage Error (MAPE) 23 3.8 Summary 24 CHAPTER 4 EMPIRICAL ANALYSIS 25 4.1 Descriptive Analysis 25 4.2 X12 Decomposition and Hodrick-Prescott Filter Methods 29 4.2.1 X12 Decomposition 29 4.2.2 H-P Filter 30 4.3 Regression Model - MAXR Method 35 4.4 Predictive Model 36 4.5 Discussion and Summary 43 CHAPTER 5 CONCLUSION AND SUGGESTION 46 REFERENCE 48

    Andrews, R. L. (1994). Forecasting Performance of Structural Time Series Models. Journal of Business & Economic Statistics, 12(1), 129-133.
    Ball, M., & Wood, A. (1996). Trend Growth in Post-1850 British Economic History: The Kalman Filter and Historical Judgment. The Statistician, 45(2), 143-152.
    Balog, K. & De Rijke, M. (2006). Decomposing Bloggers' Moods. In World Wide Web Conference.
    Bell, W. R., & Hillmer, S. C. (1984). Issues Involved with the Seasonal Adjustment of Economic Time Series: Reply. Journal of Business & Economic Statistics, 2(4), 343-349.
    Butter, F. A. G. D., & Mourik, T. J. (1990). Seasonal Adjustment Using Structural Time Series Models: An Application and A Comparison with the Census X-11 Method. Journal of Business & Economic Statistics, 8(4), 385-394.
    Casals, J., Jerez, M. & Sotoca, S. (2002). An Exact Multivariate Model-Based Structural Decomposition. Journal of the American Statistical Association, 97(458), 553-564.
    Chen, S. S. (2007). Applied Time-Series Econometrics for Macroeconomics and Finance. Tunghua corporation publisher.
    Clarkson Research Service Limited Ltd. http://www.clarksons.com/ London England 2008.
    Cogley, T., & Nason, J. M. (1995). Effects of the Hodrick-Prescott Filter on Trend and Difference Stationary Time Series Implications for Business Cycle Research. Journal of Economic Dynamics and Control, 19(1-2), 253-278
    Dagum, E. B., & Morry, M. (1984). Basic Issues on the Seasonal Adjustment of the Canadian Consumer Price Index. Journal of Business & Economic Statistics, 2(3), 250-259.
    Fearnleys Review (2008) http://fearnleys.no/index.gan.
    Findley, D. F., Monsell B. C., Bell, W. R., Otto, M. C., & Chen, B. C. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program. Journal of Business & Economic Statistics, 16(2), 127-152.
    Findley, D. F., Monsell, B. C., Shulman, H. B., & Pugh, M. G. (1990). Sliding-Spans Diagnostics for Seasonal and Related Adjustments. Journal of the American Statistical Association, 85(410), 345-355.
    Ghysels, E., Granger, C. W. J., & Siklos, P. L. (1997). Seasonal Adjustment and Volatility Dynamics. Cirano working papers 97s-39.
    Granger, C. W. J., & Newbold, P. (1974). Spurious Regressions in Econometrics. Journal of Econometrics, 2(2), 111-120.
    Harvey, A. C., & Jaeger, A. (1993). Detrending, Stylized Facts and The Business Cycle. Journal of Applied Econometrics, 8(3), 231-247.
    Hecq, A. (1998 ). Does Seasonal Adjustment Induce Common Cycles? Economics Letters, 59(3), 289-297.
    Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit and Banking, 29(1), 1-16.
    Hylleberg, S. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Comment. Journal of Business & Economic Statistics, 16(2), 167-168.
    International Grains Council (IGC). http://www.igc.org.uk/en/Default.aspx.
    Jaditz, T. (2000). Seasonality in Variance Is Common in Macro Time Series. The Journal of Business, 73(2), 245-254.
    Kavussanos, M. G., & Alizadeh-M, A. H. (2001). Seasonality Patterns in Dry Bulk Shipping Spot and Time Charter Freight Rates. Transportation Research Part E: Logistics and Transportation Review, 37(6), 443-467.
    Kavussanos, M. G., & Alizadeh-M, A. H. (2002). "Seasonality Patterns in Tanker Spot Freight Rate Markets." Economic Modelling, 19, 747-782.
    Kim, W. S., & Lyn, E. O. (1990). "FDI Theories and the Performance of Foreign Multinationals Operating in the U.S." Journal of International Business Studies, 21(1), 41-54.
    Kim, W. S., & Lyn, E. O. (1986). "Excess Market Value, the Multinational Corporation, and Tobin's q-Ratio." Journal of International Business Studies, 17(1), 119-125.
    Kliebenstein, J., Barrett, D. A., Heffernan, W. D., & Kirtley, C. L. (1980). An Analysis of Farmers' Perceptions of Benefits Received from Farming. North Central Journal of Agricultural Economics, 2(2), 131-136.
    Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (1996). Applied Linear Statistical Model. McGraw-Hill Publisher.
    Lewis, C. D. (1982). Industrial and Business Forecasting Method. London: Butterworth Scientific Publishers.
    Organization for Economic Cooperation and Development (OECD) http://www.oecd.org/home/
    Ooms, M., & Franses, P. H. (1997). On Periodic Correlations between Estimated Seasonal and Nonseasonal Components in German and U.S. Unemployment. Journal of Business & Economic Statistics, 15(4), 470-481.
    Pakko, M. R. (2000). The Cyclical Relationship between Output and Prices: An Analysis in the Frequency Domain. Journal of Money, Credit, and Banking, 32(3), 382-399.
    Qi, M. (1999). Nonlinear Predictability of Stock Returns Using Financial and Economic Variables. Journal of Business & Economic Statistics, 17(4), 419-429.
    Ratkowsky, D. A. (1990). Handbook of Nonlinear Regression Models. New York: M.Dekker.
    Ravn, M. O., & Uhlig, H. (2002). On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations. The Review of Economics and Statistics, 84(2), 371-376.
    Tayman, J., & Swanson, D. A. (1996). On the Utility of Population Forecasts. Demography, 33(4), 523-528.
    United Nation Conference on Trade and Development (UNCTAD) http://www.unctad.org/Templates/StartPage.asp?intItemID=2068
    Wen, P. L. (2005). Freight Rate Determination Mechanism in Dry-Bulk Shipping Market. Chung Yuan Christian University, Electronic Theses and Dissertations System, 093CYCU5323027.
    World Trade Organization (WTO) Press Release (2008). http://www.wto.org/
    Young, A. (1965). Estimating Trading-Day Variation in Monthly Economic Time Series. U.S. Department of Commerce, Bureau of the Census, Technical Paper, 12

    下載圖示 校內:2011-07-15公開
    校外:2014-07-15公開
    QR CODE