簡易檢索 / 詳目顯示

研究生: 楊仕郁
Young, Si-Yu
論文名稱: Metformin對胰島素抗阻性改善之研究
Effect of metformin on insulin resistance
指導教授: 鄭瑞棠
Cheng, Jui-Tang
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 91
中文關鍵詞: 胰島素抗阻性糖尿病
外文關鍵詞: insulin resistance, metformin
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   糖尿病,乃因胰島素作用的失常所引致高血糖的一種新陳代謝疾病;有85%以上的患者主要是因胰島素受器或其相關訊息分子異常所引起。本研究欲探討臨床第二型糖尿病用藥Metformin改善胰島素抗性的作用機轉。
      首先,利用果糖誘發的胰島素抗性老鼠進行葡萄糖耐受試驗,以Glucose-insulin index為評估指標,發現給予Metformin可降低該指標,但會因給予Naloxone阻斷而使該指標回升;在基因型胰島素抗性的Zucker老鼠也得到相同的結果。另外,由Hyperinsulinemic- euglycemic clamp的結果也顯示Naloxone或Naloxonazine會阻斷因Metformin而改善的胰島素抗性相關指標。進一步以餵食果糖的嗎啡型接受體剔除的小鼠進行測試,發現Metformin改善胰島素抗性的能力消失。此外,在西方點墨法也看到Metformin所活化的Akt會被Naloxonazine所抑制。由此可知,嗎啡型受體對Metformin改善胰島素抗性的重要性。
      接著,藉由Enzyme- linked immunosorbent assay (ELISA)得知,Metformin會以劑量相關的方式增加果糖老鼠血中-endorphin的含量。由於-endorphin的釋放可能來自腎上腺,因此,將果糖大白鼠的兩側腎上腺摘除,發現胰島素抗性就無法被Metformin所改善。另外,Metformin在第一型糖尿病老鼠會透過抑制COMT活性刺激-endorphin釋放而達到降血糖的效果。因此,也測試了第二型糖尿病老鼠,發現給予 Metformin會使catecholamines增加,COMT的活性減少;在給予1受體阻斷劑Prazosin後,會抑制COMT的阻斷劑Encatapone對胰島素抗性的改善效果。
      藉由西方點墨法測試,看到於離體骨骼肌的檢體,-endorphin會增加AMPK的磷酸化。此外,已知AMPK活化會增加體內脂肪酸的氧化作用,本研究也證實不論是Metformin或是型受體作用劑Loperamide都有此一現象。
      綜合以上結果,Metformin藉由抑制COMT活性而刺激腎上腺釋放-endorphin,進一步活化嗎啡型受體,再透過增加Akt磷酸化來改善胰島素抗性。另外,Metformin也會活化AMPK,改善血中游離脂肪酸;此現象和改善胰島素抗性也有關。

      Diabetes mellitus (DM) is the metabolic disorder caused by abnormalities of insulin action, and 85% patients result from dysregulation of insulin receptor or its signaling pathway. In the present study, effect of metformin on insulin resistance is investigated.
      Metformin causes the lowering of glucose-insulin index in fructose-fed rats in the glucose tolerance test. This lowering effect on glucose-insulin index by metformin is abolished by pretreatment of naloxone. In addition, the response was also observed in Zucker-diabetic fatty rats. Also, the improvement of insulin resistance indicator by metformin is inhibited by naloxone or naloxonazine in the hyperinsulinemic-euglycemic clamp. Furthermore, in the fructose-fed knockout -receptor mice metformin loses the ability to improve insulin resistance. In the Western blot, phosphorylation of Akt by metformin is inhibited by naloxonazine. It is indicated that opioid- receptors play a role in the effect of metformin on insulin resistance.
      From the enzyme-linked immunosorbent assay (ELISA), metformin dose dependently increase the plasma -endorphin level in fructose-fed rats. In general, plasma -endorphin is mostly secreted from the adrenal gland. In bilateral adrenalectomized fructose-fed rats, the ability of improving insulin resistance caused by metformin is abolished. As described previously, metformin increased the plasma -endorphin to lower plasma glucose through inhibition of COMT activity in type І diabetic rats. In type П diabetic rats, metformin increase catecholamines and inhibit COMT activity. Also, prazosin abolishes the insulin resistance improving action of COMT inhibitor, encatapone.
      In present study, we present the data that -endorphin also increases phosphorylation of AMPK in vitro. In the animal study, fatty acid oxidation was increased by AMPK. Also, metformin and loperamide reduce free fatty acid.
      In conclusion, metformin can increase -endorphin secrete from adrenal gland via inhibition of COMT activity. Then, -endorphin activates opioid  receptor to increase phosphorylation of Akt, for improvement of insulin resistance. Moreover, metformin can activate AMPK directly to increase fatty acid oxidation that may involve in the improvement of insulin resistance.

    中文摘要 2 英文摘要 5 縮寫表 8 第一章 緒論 10 第二章 實驗方法及材料 16 第三章 實驗結果 31 第四章 討論 43 第五章 結論 46 參考文獻 51 附圖 60 自述 91

    Akil HW, Young SJ, Lewis ME, Khachaturian H, and Walker JM. Endogenous opioid: biology and function. Annu. Rev. Neurosci. 7: 223-255 (1984)

    Alastair JJ. Metformin. New Engl. J. Med. 334 : 574-579 (1996)

    Bergman RN, Finegood DT, and Kahn SE. The evolution of -cell dysfunction and insulin resistance in type 2 diabetes. Eur. J. Clin. Invest. 32:35-45 (2002)

    Berger M, Muhlhauser I, and Jorgens V. Evaluation of education of the diabetic. Quality control in diabetes therapy. MMW Fortschritte der Medizin. 101 : 212-215 (1983)

    Bertram GK. Basic&Clinical Pharmacology.7th Edition, Appleton & Lange, pp.80-81 (1998)

    Bringer J, Raingeard I, Renard E, Grigorescu F, and Lefebvre P. Insulin sensitivity and polycystic ovarian syndrome. Diabetes & Metab. 27: 239-245 (2001)

    Bruni JF, Watkins WB, and Yen SC. -endorphin in the human endocrine pancreas. J. Clin. Endocrinol. Metab. 49: 649-651 (1979)

    Cannon JG. Acute phase response in exercise. II. Associations between vitamin E. cytokines, and muscle proteolysis. Am. J. Physiol. 260: R1235-R1240 (1991)

    Civantos CB. Alpha-adrenoceptor subtypes. Pharmacol. Res. 44: 195-208 (2001)

    Chun NV, Kong AP, Kim DD, Armstrong d, Baxi S, Deutsch R, Caulfield M, Mudaliar SR, Reitz R, Henry RR, and Reaven PD. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 25: 542-549 (2002)

    Curry DL, and Li CH. Stimulation of insulin secretion by beta-endorphin (1-27 and 1-31) Life. Sci. 40: 2053-2058 (1987)

    Defronzo RA. The triumvirate: -cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667-687 (1988)

    Defronzo RA, Bonadonna RC, and Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15: 318-368 (1992)

    Erik JH, Stephen J, Tyson RK, Mary KT, and Michael K. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 38: 884-890 (2001)

    Filz HP. Insulin sensitizer. A new therapy option for type 2 diabetic patients. MMW Fortschritte der Medizin. 142: 31-33 (2000)

    Gerich JE. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 19: 491-503 (1998)

    Giguere V, Cote J, and Labrie F. Characteriristics of the α-adrenergic stimulation of adrenocorticotropin secretion in rat anterior pituitary cells. Endocrinology 109: 757-762 (1981)

    Giugliano D. Morphine, opioid peptides and pancreatic islet function. Diabetes Care 7: 92-98 (1984)

    Goda T, Yamada K, Sugiyama M, Moriuchi S, and Hosoya , N. Effect of sucrose and acarbose feeding on the development of streptozotocin -induced diabetes in the rat. J. Nutri. Sci. & Vita. 28 : 41-56 (1982 )

    Goldstein DA, and Massry SG. Diabetic nephropathy: Clinical course and effect of hemodialysis. Nephron 20: 286-296 (1987)

    Hamman RF. Genetic and environmental determinants of non- insulin dependent diabetes mellitus (NIDDM). Diabetes Metab. Rev. 8: 287-338 (1992)

    Hotamisligil GS. The role of TNF alpha and TNF receptors in obesity and insulin resistance. J. Intern. Med. 245: 621-625 (1999)

    Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR and Shulman GI Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49: 2063-2069 (2000)

    Iwase M, Yamaguchi M, Yoshinari M, Okamura C, Hirahashi T, Tsuji H, and Fujishima M. A Japanese case of liver dysfunction after 19 months of troglitazone treatment. Diabetes Care 22: 1382-1384 (1999)

    Josefa NC, Rosaura M, Francisco PV, Victoria C, Lius MP, Juan T, and Vicente L. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertension rats. Hypertension 26: 1074-1078 (1995)

    Kantor PF, Lopaschuk GD, and Opie LH. Myocardial energy metabolism. Heart Physiology and Pathophysiology. 4th ed. London: Academic Press (2001)

    Kara RF, Michelle SS, Tyson RK, Melanie BS, Erik BY, and Erik JH. Effects of exercise training and ACE inhibition on insulin action in rat skeletal muscle. J. Appl. Physiol. 89: 687-694 (2000)

    Koenig JI, Meltzer HY, Devane GD, and Gudelsky GA. The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology 118: 2534-2539 (1986)

    Kudo N, Barr AJ, Barr RL, Desai S, and Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl- CoA levels due to an increase in 58-AMP- activated protein
    kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270: 17513– 17520 (1995)

    Laemmli UK. Cleavage of structure protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685 (1970)

    Lee JM, and Peuler JD. A possible indirect sympathomimetic action of metformin in the arterial vessel wall of spontaneously hypertensive rats. Life. Sci. 69: 1085-1092 (2001)

    Liu IM, Chi TC, Chen YC, Lu FH, and Cheng JT. Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin -induced diabetic rats. Neurosci. Lett. 265: 183-186 (1999a)

    Liu IM, Niu CS, Chi TC, Kuo DH, and Cheng JT. Investigation
    of the mechanism of the reduction of plasma glucose by cold-stress in streptozotocin-induced diabetic rats. Neurosci. 92: 1137-1142 (1999b)

    Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)

    Mu J, Brozinick JTJ, Valladares O, Bucan M, and Birnbaum
    MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085–1094 (2001)

    Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H, Freise C, Lee WM, and Bass NM. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Dig. Dis. Sci. 45: 549-553 (2000)

    Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, and Goodyear LJ. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 51: 2074-2081 (2002)

    Porstmann T, and Kiessig ST. Enzyme immunoassay techniques. J. Immunol. Methods. 150: 5-21 (1992)

    Radziuk J, Norwich KH, and Vranic M. Experimental validation of measurements of glucose turnover in nonsteady state. Am. J. Physiol. 234: E84–E93 (1978)

    Santure M, Pitre M, Gaudreault N, Marette A, Nadeau A, and Bachelard H. Effect of metformin on the vascular and glucose metabolic actions of insulin in hypertensive rats. Am. J. Physiol. 278: G682-692 (2000)

    Schultzberg M, Lundberg JM, Hokfelt T, Terenius L, Brandt J, Elde RP, and Goldstein M. Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3: 1169-1186 (1978)

    Spraul M, Anderson EA, Bogardus C, and Ravussin E. Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43: 191-196 (1994)

    Steele RW, Wall JS, DeBodo RC, and Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am. J. Physiol. 187: 15–24, 1956.

    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, and Wright CM. The hormone resistin links obesity to diabetes. Nature 409: 307-312 (2001)

    Sugaya A, Sugiyama T, Yanase S, Shen XX, Minoura H, and Toyoda N. Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones. Life. Sci. 66: 641-648 (1999)

    Tai TY, Yang CL, Chang CJ, Chang SM, Chen YH, Lin BJ, Ko LS, Chen MS, and Chen CJ. Epidemiology of diabetes mellitus in Taiwan, ROC-comparison between urban and rural areas. J. Med. A. Thai. 70: 49-53(1987)

    Tobey TA, Mondon CE, Zavaroni I, and Reaven GM. Mechanism of insulin resistance in fructose-fed rats. Metab. Clin. Exp. 31: 608-12 (1982)

    Toyota T, and Ueno Y. Clinical effect and side effect of troglitazone. Nippon Rinsho-Jap. J. Clin. Med. 58: 376-382 (2000)

    Wang JP, Liu IM, Tzeng TF, and Cheng JT. Decrease in catechol-O- methyltransferase activity in the liver of streptozotocin-induced diabetic rats. Clin.& Exp. Pharmacol. & Physiol. 29: 419-422 (2002)

    Weidmann P, Boehlen LM, and Courten M. Pathogenesis and treatment of hypertension associated with diabetes mellitus. Am. Heart. J. 125: 1498 -1513 (1993)

    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, and Pratley RE. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935 (2001)

    Winder WW, and Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277: E1-E10 (1999)

    Yamada K, Yamakawa K, and Terada Y. Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin -induced diabetic pregnant rats. Horm. Metab. Res. 31: 508-513 (1999)

    Yamamura M, Wang XH, Ohmen JD, Uyemura K, Rea TH, Bloom BR, and Modlin RL. Cytokine patterns of immunologically mediated tissue damage. J. Immunol. 149: 1470-1475 (1992)

    Yoshinaga TA. Morphological study on the mechanism of insulin-release, using sulfonylurea, l-leucine, and alpha-ketocarboxylic acids. Nippon Naibunpi Gakkai Zasshi - Folia Endocrinol. Jap. 44: 741-749 (1968)

    Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J. Inter. Med. 247: 301-310 (2000)

    劉怡旻 中藥升麻酸降血糖作用之研究,成功大學基礎醫學研究所博士論文。pp. 100-101, 2001

    游步青 中藥穿心蓮素降血糖作用之研究,成功大學藥理學研究所碩士論文。pp. 54-65, 2002

    行政院衛生署92年死因統計資料

    下載圖示 校內:2006-07-12公開
    校外:2006-07-12公開
    QR CODE