| 研究生: |
許閎智 Hsu, Hung-Chih |
|---|---|
| 論文名稱: |
自動輪廓線辨識機制於醫學影像上之應用 The Application of the Automatic Contour Recognition Mechanism on the Medical Images |
| 指導教授: |
陳立祥
Chen, Lih-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 動態輪廓線模型 |
| 外文關鍵詞: | Active Contour Model |
| 相關次數: | 點閱:57 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自動輪廓線辨識機制是由使用者給定一張切片影像及一條初始、精準的輪廓線,從一系列的影像中,找出每一張影像相同器官的輪廓線,以大幅減少使用者繪製輪廓線的時間。
本機制採用的動態輪廓線模型是以離散動態輪廓線模型為基礎加以改良,改善傳統模型準確度及效率方面等不足之處。在新的模型中對影像前處理進行增強:加強物件的特徵、減弱雜訊的影響,對變形的各種錯誤進行偵測、修正,並利用輪廓線評估系統評估最後變形的結果,修正變形不佳之處,增加器官邊緣的準確性;另外,機制中也加入器官模型的器官形狀、大小等相關參考資訊來偵測器官輪廓的走勢與變化,對動態輪廓線模型做應對的調整使變形結果更趨完美。
Automatic Contour Recognition Mechanism is to start out with a given image and an initial contour that circles the organ of interest and extract the organ contour from a stack of images. It is used to reduce the effort of drawing contours by users.
The mechanism used is based on the discrete dynamic contour model and is improved in terms of the accuracy and the performance. In the mechanism, we enhance the image pre-processing, detect and correct various deformation errors, and evaluate the final deformation result by the Contour Evaluation System. The mechanism also adds the information of the organ model such as organ shape, organ size…etc, to estimate the shape and the change of the organ contour, adjusts the active contour model, and improved the deformation result.
[1]: C. Kenney, Y. Deng, B. S. Manjunath, and G. Hewer, "Peer group image enhancement," IEEE Trans. Image Processing, vol. 10, pp. 326--334, Feb. 2001
[2]: Chia-Chen Chang, “An Active Contour Model and Its Applications in Medical 3D Imaging” , National Cheng Kung University, 2005
[3]: Hsiang-Lin Hsu “The Application of the Contour Evaluation System on the Medical Images” , National Cheng Kung University, 2006
[4]: J.C, Bezdek, “A Geometric Approach to Edge Detection”, IEEE Transaction On Fuzzy systems,Vol.6, No.1, February 1998
[5]: J. F. Canny, “A computational approach to edge detection, “IEEE Trans, Pattern Analysis and Machine Intelligence, Vol. 9, pp. 679-698, Nov. 1986
[6]: Mark A. Ruzon, Carlo Tomasi, "Color Edge Detection with the Compass Operator," cvpr, p. 2160, 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99) - Volume 2, 1999
[7]: M. Ruzon and C. Tomasi, "Corner Detection in Textured Color Images," In 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, V. 2, pp. 1039-1045, September 1999
[8]: M. Ruzon and C. Tomasi, "Edge, Junction, and Corner Detection Using Color Distributions," In IEEE Transactions on Pattern Analysis and Machine Intelligence, V. 23, No. 11, pp. 1281-1295, November 2001
[9]: Rafael C. Gonzalez and Richard E. Woods,“Digital Image Processing” Second Edition, Prentice-Hall Inc., 2002
[10]: S. L and M. A. Viergever, “A Discrete Dynamic Contour Model,” IEEE Trans. On Medical Imaging, Vol 14, No. 1, pp. 12-24, Mar. 1995
[11]: Y. Deng, S.Kenney, M.S.Moore and B. S.Manjunath, "Peer group filtering and perceptual color image quantization", Proc. IEEE International Symposium on Circuits and Systems VLSI , (ISCAS'99), Orlando, FL, vol 4, pp.21-4 , June 1999
[12]: Yu-Jen Lin, “An Active Contour Model and Its Applications in Medical 3D Imaging”, National Cheng Kung University, 2004