| 研究生: |
林則安 Lin, Tse-An |
|---|---|
| 論文名稱: |
合成磺酸化氫化橡膠及其血液相容性與細胞毒性之探討 Synthesis of Sulfonated SEPS and its characteristics of hemocompatibility and cytotoxicity |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 磺酸化 、彈性材料 、氫化橡膠 、傷口敷料 、血液相容性 、細胞毒性 |
| 外文關鍵詞: | sulfonation, elastic materials, hydrogenated SEPS, wound dressing, blood compatibility, cytotoxicity |
| 相關次數: | 點閱:230 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將利用陰離子聚合合成出SIS三嵌段共聚物,此嵌段共聚物是由苯乙烯-異戊二烯-苯乙烯所組成。而在本實驗中會於苯乙烯鏈段中混摻入不同比例之叔丁基苯乙烯,去觀察其對高分子磺酸化所造成的影響。
由於經由陰離子聚合所得到嵌段共聚物是由苯乙烯組成的硬鏈段及異戊二烯所組成的軟鏈段所構成,而在軟鏈段的部分具有雙鍵,會造成此團鏈段共聚物在高溫時容易降解,所以在本實驗中利用氫化反應使其變為poly (styrene-b-(ethylene-co-propylene)-b-styrene) (SEPS),讓上面的雙鍵消失,並且具有更佳的熱性質。
最後經由磺酸化反應,將磺酸根導入SEPS高分子中,利用磺酸根的生物相容性及親水性,結合氫化橡膠的高彈性,開發出具有保水透濕的彈性材料,並經由血液相容性評估與細胞毒性評估,確認其具有應用於醫療敷材的潛力。
In this study, SIS triblock copolymers were successfully copolymerized by anionic copolymerization. This type of triblock copolymer is the composite of styrene-isoprene-styrene. In this experiment, the hard segment of the triblock copolymer will be blended with different ratios of styrene and tert-butyl styrene, and the effects of the blending ratio on the degree of sulfonation was observed.
Because the triblock copolymer is a composite of the hard segment styrene and the soft segment isoprene, there are double bonds in the soft segment which will cause the triblock copolymer to degrade easily at high temperature. In order to overcome this issue, the SIS triblock copolymer underwent hydrogenation, which can saturate the existing double bonds, giving the resulting SEPS (styrene-ethylene-propylene-styrene) triblock copolymer better thermal properties.
After the hydrogenation, SEPS would go through sulfonattion, introducing the hydrophilic sulfonic functional groups into the SEPS triblock copolymer. The purpose of sulfonating SEPS triblock copolymers is to combine the biocompatibility and hydrophilicity of the sulfonic functional groups with the high resilience of SEPS, thus developing a new elastic material that possesses moisture retention capabilities. Finally, via the assessment of blood compatibility and cytotoxicity tests, this research can demonstrate that sulfonated SEPS exhibits great potential in being future candidates for wound dressing or in tissue engineering applications.
1. Holden, G., H.R. Kricheldorf, and R. Quirk, in Thermoplastic Elastomers. 2004, Hanser Publishers: Munich, Chapter 4, p. 69.
2. Drobny, J.G., in Handbook of Thermoplastic Elastomers. 2007, William Andrew Inc.: New York, Chapter 5, p. 161-178.
3. Lynd, N.A., F.T. Oyerokun, D.L. O’Donoghue, D.L. Handlin, and G.H. Fredrickson, Design of Soft and Strong Thermoplastic Elastomers Based on Nonlinear Block Copolymer Architectures Using Self-Consistent-Field Theory. Macromolecules, 2010. 43(7): p. 3479-3486.
4. Benedek, I. and M.M. Feldstein, in Technology of Pressure-Sensitive Adhesives and Products, I. Benedek and M.M. Feldstein, Editors. 2009, CRC Press: Florida, Chapter 3, p. 3-1 - 3-45.
5. El Fray, M., P. Prowans, J.E. Puskas, and V. Altstädt, Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial. Biomacromolecules, 2006. 7(3): p. 844-850.
6. Puskas, J.E., E.A. Foreman-Orlowski, G.T. Lim, S.E. Porosky, M.M. Evancho-Chapman, S.P. Schmidt, M. El Fray, M. Piatek, P. Prowans, and K. Lovejoy, A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials, 2010. 31(9): p. 2477-88.
7. Pinchuk, L., G.J. Wilson, J.J. Barry, R.T. Schoephoerster, J.M. Parel, and J.P. Kennedy, Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials, 2008. 29(4): p. 448-60.
8. Sawyer, P., C. Burrowes, J. Ogoniak, A. Smith, and S. Wesolowski, Ionic architecture at the vascular wall interface. ASAIO Journal, 1964. 10(1): p. 316-319.
9. Okano, T., S. Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, K. Kataoka, and T. Tsuruta, Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. Journal of biomedical materials research, 1981. 15(3): p. 393-402.
10. Okano, T., T. Aoyagi, K. Kataoka, K. Abe, Y. Sakurai, M. Shimada, and I. Shinohara, Hydrophilic‐hydrophobic microdomain surfaces having an ability to suppress platelet aggregation and their in vitro antithrombogenicity. Journal of biomedical materials research, 1986. 20(7): p. 919-927.
11. Roh, H., M. Song, D. Han, D. Lee, J. Ahn, and S. Kim, Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1): p. 123-143.
12. Han, D.K., K.D. Park, K.D. Ahn, S.Y. Jeong, and Y.H. Kim, Preparation and surface characterization of PEO‐grafted and heparin‐immobilized polyurethanes. Journal of biomedical materials research, 1989. 23(S13): p. 87-104.
13. Okkema, A., S. Visser, and S. Cooper, Physical and blood‐contacting properties of polyurethanes based on a sulfonic acid‐containing diol chain extender. Journal of biomedical materials research, 1991. 25(11): p. 1371-1395.
14. Grasel, T.G. and S.L. Cooper, Properties and biological inteactions of polyurethane anionomers: Effect of sulfonate incorporation. Journal of biomedical materials research, 1989. 23(3): p. 311-338.
15. Han, D.K., S.Y. Jeong, Y.H. Kim, B.G. Min, and H.I. Cho, Negative cilia concept for thromboresistance: synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. Journal of biomedical materials research, 1991. 25(5): p. 561-575.
16. Lee, J.H., G. Khang, J.W. Lee, and H.B. Lee, Platelet adhesion onto chargeable functional group gradient surfaces. Journal of biomedical materials research, 1998. 40(2): p. 180-186.
17. Srinivasan, S., C. Burrowes, T. Lucas, S. Bauer, and P. Sawyer, Effect of varying electrolyte concentration on in vitro streaming potentials across canine aortae and carotid arteries. Journal of biomedical materials research, 1967. 1(3): p. 355-367.
18. Lundberg, R.D., H.S. Makowski, and G.H. Singhal, Flexible polymeric compositions comprising a normally plastic polymer sulfonated to about 0.2 to about 10 mole% sulfonate. 1975, Google Patents.
19. Orler, E.B., R.V. Gummaraju, B.H. Calhoun, and R.B. Moore, Effect of preferential plasticization on the crystallization of lightly sulfonated syndiotactic polystyrene ionomers. Macromolecules, 1999. 32(4): p. 1180-1188.
20. Semon, W.L., Synthetic rubber-like composition and method of making same. 1933, Google Patents.
21. Legge, N.R., G. Holden, and H. Schroeder, Thermoplastic elastomers: a comprehensive review, in Carl Hanser Verlag, Kolbergerstr. 22, D-8000 Munchen 80, FRG, 1987. 574. 1987, chapter6.
22. German Patent, D., 728981. A process for the production of polyurethanes and polyureas/O. Bayer, W. Siefken, H. Rinke, L. Orthner, H. Schild.—13.11, 1937.
23. Edward, C.R. and H.W. Edward, Treatment of polyesters and product therefrom. 1943, Google Patents.
24. Hanford, W.E. and D.F. Holmes, Process for making polymeric products and for modifying polymeric products. 1942, Google Patents.
25. Dagenkolb, S.M., Elastic linear copolyesters. 1952, Google Patents.
26. Langerak, E.O., L.J. Prucino, and W.R. Remington, Elastomers from polyalkylene ether glycol reacted with arylene diisocyanate and water. 1954, Google Patents.
27. Karl, M. and H. Richard, Composition of matter comprising polypropylene and an ethylene-propylene copolymer. 1966, Google Patents.
28. Saldivar-Guerra, E. and E. Vivaldo-Lima, in Handbook of Polymer Synthesis, Characterization, and Processing. 2013, John Wiley & Sons, Inc: Hoboken, New Jersey.
29. Hsieh, H.L. and R.P. Quirk, Anionic Polymerization: Principles And Practical Applications. 1996, New York: Marcel Dekker.
30. SZWARC, M., ‘Living’polymers. 1956.
31. Szwarc, M., M. Levy, and R. Milkovich, Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. Journal of the American Chemical Society, 1956. 78(11): p. 2656-2657.
32. Penczek, S. and G. Moad, Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC Recommendations 2008). Pure and Applied Chemistry, 2008. 80(10): p. 2163-2193.
33. IISRP, Worldwide Rubber Statistics. 2009, International Institute of Synthetic Rubber Producers: Houston.
34. Morton, M. and L.J. Fetters, Anionic polymerization of vinyl monomers. Rubber Chemistry and Technology, 1975. 48(3): p. 359-409.
35. Hadjichristidis, N., H. Iatrou, S. Pispas, and M. Pitsikalis, Anionic polymerization: high vacuum techniques. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(18): p. 3211-3234.
36. Uhrig, D. and J.W. Mays, Experimental techniques in high‐vacuum anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(24): p. 6179-6222.
37. Heublein, G. and D. Stadermann, Selective polymerization from olefin mixtures. Progress in polymer science, 1989. 14(2): p. 195-249.
38. Bywater, S. and D. Worsfold, Alkyllithium anionic polymerization initiators in hydrocarbon solvents. Journal of Organometallic Chemistry, 1967. 10(1): p. 1-6.
39. Gatzke, A.L., Chain transfer in anionic polymerization. Determination of chain‐transfer constants by using carbon‐14‐labeled chain transfer agents. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1969. 7(8): p. 2281-2292.
40. Schue, F., R. Aznar, J. Sledz, and P. Nicol. Thermolytic behaviour of polybutadienyllithium and polystyryllithium in ethylbenzene at high concentrations. in Makromolekulare Chemie. Macromolecular Symposia. 1993. Wiley Online Library.
41. Budavari, S., M. O’Neil, A. Smith, and P. Heckelman, The Merck Index (Merck & Co., Inc. Rahway, NJ). 1989. p. 238.
42. Wakefield, B.J., The chemistry of organolithium compounds. 2013: Elsevier.
43. Morton, M., Anionic polymerization: principles and practice. 2012: Elsevier.
44. Bywater, S. and D. Worsfold, Anionic Polymerization of Styrene Effect of Tetrahydrofuran. Canadian Journal of Chemistry, 1962. 40(8): p. 1564-1570.
45. Bywater, S. and I. Alexander, Influence of dioxane on the anionic polymerization of styrene in benzene. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1968. 6(12): p. 3407-3410.
46. Worsfold, D. and S. Bywater, Anionic polymerization of styrene. Canadian Journal of Chemistry, 1960. 38(10): p. 1891-1900.
47. Roovers, J. and S. Bywater, The polymerization of isoprene with sec-butyllithium in hexane. Macromolecules, 1968. 1(4): p. 328-331.
48. Matsuo, M., T. Ueno, H. Horino, S. Chujyo, and H. Asai, Fine structures and physical properties of styrene-butadiene block copolymers. Polymer, 1968. 9: p. 425-436.
49. Holden, G., E. Bishop, and N.R. Legge. Thermoplastic elastomers. in Journal of Polymer Science Part C: Polymer Symposia. 1969. Wiley Online Library.
50. Inoue, T., T. Soen, T. Hashimoto, and H. Kawai, Thermodynamic interpretation of domain structure in solvent‐cast films of A–B type block copolymers of styrene and isoprene. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(8): p. 1283-1301.
51. Beecher, J.F., L. Marker, R. Bradford, and S. Aggarwal. Morphology and mechanical behavior of block polymers. in Journal of Polymer Science Part C: Polymer Symposia. 1969. Wiley Online Library.
52. Inoue, T., M. Moritani, T. Hashimoto, and H. Kawai, Deformation mechanism of elastomeric block copolymers having spherical domains of hard segments under uniaxial tensile stress. Macromolecules, 1971. 4(4): p. 500-507.
53. Pedemonte, E., A. Turturro, U. Bianchi, and P. Devetta, The cubic structure of a SIS three block copolymer. Polymer, 1973. 14(4): p. 145-150.
54. Pedemonte, E., G. Dondero, G.C. Alfonso, and F. de Candia, Three-block copolymers: morphologies and stress-strain properties of samples prepared under various experimental conditions. Polymer, 1975. 16(7): p. 531-538.
55. Yeh, G., R. Hosemann, J. Loboda-Čačković, and H. Čačković, Annealing effects of polymers and their underlying molecular mechanisms. Polymer, 1976. 17(4): p. 309-318.
56. Adhikari, R., R. Godehardt, W. Lebek, R. Weidisch, G. Michler, and K. Knoll, CORRELATION BETWEEN MORPHOLOGY AND MECHANICAL PROPERTIES OF DIFFERENT STYRENE/BUTADIENE TRIBLOCK COPOLYMERS: A SCANNING FORCE MICROSCOPY STUDY*. Journal of macromolecular science, Part B, 2001. 40(5): p. 833-847.
57. Li, R., J. Jin, and Y. Sun, Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D. Applied Surface Science, 2014. 301: p. 300-306.
58. Huy, T.A., R. Adhikari, R. Weidisch, G.H. Michler, and K. Knoll, Influence of interfacial structure on morphology and deformation behavior of SBS block copolymers. Polymer, 2003. 44(4): p. 1237-1245.
59. Sefton, M.V. and E.W. Merrill, Surface hydroxylation of styrene–butadiene–styrene block copolymers for biomaterials. Journal of biomedical materials research, 1976. 10(1): p. 33-45.
60. Nyilas, E., E. Kupski, P. Burnett, and R. Haag, Surface microstructural factors and the blood compatibility of a silicone rubber. Journal of biomedical materials research, 1970. 4(3): p. 369-431.
61. Goosen, M.F. and M.V. Sefton, Heparinized styrene‐butadiene‐styrene elastomers. Journal of biomedical materials research, 1979. 13(3): p. 347-364.
62. Yang, J.M., J.H. Yang, and H.T. Huang, Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing. Materials Science & Engineering C-Materials for Biological Applications, 2014. 34: p. 140-148.
63. Li, X., S. Luan, H. Yang, H. Shi, J. Zhao, J. Jin, J. Yin, and P. Stagnaro, Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol). Applied Surface Science, 2012. 258(7): p. 2344-2349.
64. Luan, S., H. Yang, H. Shi, J. Zhao, J. Wang, and J. Yin, Stabilization of polypropylene, polypropylene blends with poly (styrene-b-(ethylene-co-butylene)-b-styrene) under irradiation: A comparative investigation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011. 269(2): p. 94-99.
65. 何敏夫, 血液學. 1993, 合記出版社.
66. Lin, J.-C., T.-M. Ko, and S.L. Cooper, Polyethylene surface sulfonation: surface characterization and platelet adhesion studies. Journal of colloid and interface science, 1994. 164(1): p. 99-106.
67. You, I., S.M. Kang, Y. Byun, and H. Lee, Enhancement of blood compatibility of poly (urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjugate chemistry, 2011. 22(7): p. 1264-1269.
68. Capila, I. and R.J. Linhardt, Heparin–protein interactions. Angewandte Chemie International Edition, 2002. 41(3): p. 390-412.
69. Cheng, C., S. Sun, and C. Zhao, Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. Journal of Materials Chemistry B, 2014. 2(44): p. 7649-7672.
70. Begovac, P., R. Thomson, J. Fisher, A. Hughson, and A. Gällhagen, Improvements in GORE-TEX® Vascular Graft performance by Carmeda® bioactive surface heparin immobilization. European Journal of Vascular and Endovascular Surgery, 2003. 25(5): p. 432-437.
71. Chang, C.H., L.S. Lico, T.Y. Huang, S.Y. Lin, C.L. Chang, S.D. Arco, and S.C. Hung, Synthesis of the Heparin‐Based Anticoagulant Drug Fondaparinux. Angewandte Chemie International Edition, 2014. 53(37): p. 9876-9879.
72. Han, D.K., N.Y. Lee, K.D. Park, Y.H. Kim, H.I. Cho, and B.G. Min, Heparin-like anticoagulant activity of sulphonated poly (ethylene oxide) and sulphonated poly (ethylene oxide)-grafted polyurethane. Biomaterials, 1995. 16(6): p. 467-471.
73. Okkema, A. and S. Cooper, Effect of carboxylate and/or sulphonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials, 1991. 12(7): p. 668-676.
74. Santerre, J., P. Ten Hove, N. VanderKamp, and J. Brash, Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: possible correlation with anticoagulant behavior. Journal of biomedical materials research, 1992. 26(1): p. 39-57.
75. Skarja, G. and J. Brash, Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment. Journal of biomedical materials research, 1997. 34(4): p. 439-455.
76. Takahara, A., A.Z. Okkema, H. Wabers, and S.L. Cooper, Effect of hydrophilic soft segment side chains on the surface properties and blood compatibility of segmented poly (urethaneureas). Journal of biomedical materials research, 1991. 25(9): p. 1095-1118.
77. Silver, J.H., J.-C. Lin, F. Lim, V.A. Tegoulia, M.K. Chaudhury, and S.L. Cooper, Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials, 1999. 20(17): p. 1533-1543.
78. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis. 6ed ed. 2007: Thomson.
79. Weiss, R., A. Sen, C. Willis, and L. Pottick, Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly (styrene-ethylene/butylene-styrene). Polymer, 1991. 32(10): p. 1867-1874.
80. Sato, H. and Y. Tanaka, 1H‐NMR study of polyisoprenes. Journal of Polymer Science: Polymer Chemistry Edition, 1979. 17(11): p. 3551-3558.
81. Li, H., X. Zeng, and W. Wu, Epoxidation of styrene-isoprene-styrene block copolymer and its use for hot-melt pressure sensitive adhesives. Polymer-Plastics Technology and Engineering, 2008. 47(10): p. 978-983.
82. Mather, B.D., F.L. Beyer, and T.E. Long, Synthesis and SAXS characterization of sulfonated styrene-ethylene/propylene-styrene triblock copolymers. 2006, DTIC Document.
83. Luan, S., J. Zhao, H. Yang, H. Shi, J. Jin, X. Li, J. Liu, J. Wang, J. Yin, and P. Stagnaro, Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B-Biointerfaces, 2012. 93: p. 127-134.
84. Li, X., S. Luan, H. Shi, H. Yang, L. Song, J. Jin, J. Yin, and P. Stagnaro, Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B-Biointerfaces, 2013. 102: p. 210-217.
85. Ribeiro, S., P. Costa, C. Ribeiro, V. Sencadas, G. Botelho, and S. Lanceros-Méndez, Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014. 67: p. 30-38.
校內:2021-08-24公開