簡易檢索 / 詳目顯示

研究生: 陳衡勳
Chen, Heng-Xun
論文名稱: 鹼土離子對於銪在硼矽酸鹽基質中自發還原現象及螢光性質之研究
Spontaneous reduction and fluorescence properties of europium ions in alkali-earth borosilicate
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 鹼土硼矽酸鹽銪離子自發還原螢光
外文關鍵詞: alkaline earth borosilicate, Eu ions, spontaneous reduction, fluorescence
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份為觀察硼鋁矽酸鹽基質中,B離子的添加比例對於Eu螢光性質的影響,由於Al離子的添加,確認能使Eu3+離子在非還原氣氛下部分還原成具有藍光發光特性的Eu2+。由27Al NMR實驗結果發現,B離子的添加量提高,以AlO6結構鍵結的Al離子比例逐漸降低,造成Eu3+自發還原量下降,是因為當network modifier的AlO6與Eu產生結構上的鍵結(Al-O-Eu)時,利於Eu的還原作用。
    本研究第二部分為改用鹼土離子的添加,於空氣中煆燒處理後,觀察B的添加比例,在摻雜有固定比例的Ca、Sr之硼矽酸鹽基質中,Eu3+自發還原現象和螢光性質表現,並且討論與基質成份和結構之間的關連性。實驗結果發現,在固定Ca或Sr添加量時,Eu3+的自發還原量與基質中所含[BO4]比例有關。由於[BO4]可抑制氧化作用的發生,對Eu2+有屏蔽穩定的作用,因此Eu3+的自發還原比例會隨著[BO4]的比例也增加而提升。然而除了[BO4]的比例之外,Ca或Sr的加入,可以有效分散有高配位需求的Eu離子,降低其因自我凝聚所造成的濃度淬滅,同時Ca2+或Sr2+與Eu3+離子之間所發生的不等價取代效應,也在Eu3+的自發還原作用中扮演着極為重要的角色。一旦Ca被侷限在矽灰石結晶相中,即使基質中含有足夠的[BO4],也無法誘發Eu3+還原作用的發生。
    另一方面,在含Sr的硼矽酸鹽基質中,Eu離子可能分別存在於非晶質結構、SrCl2及Sr2B5O9Clr結晶相中,透過不等價取代的方式還原成Eu2+。此時在含Sr2+的硼矽酸鹽系統中,Eu2+的還原比例,與系統中SrCl2、Sr2B5O9Cl結晶相含量及Eu3+取代Sr2+的量有關,而受到[BO4]比例影響較小。
    本研究第三部分,討論於鍶硼矽酸鹽基質中,改變催化劑及煆燒溫度的製程條件,對於Eu離子螢光性質的影響。實驗結果推論 403 nm附近為鍶硼矽玻璃相中Eu2+所放出的藍光, 411 – 416 nm附近為Eu2+處於SrCl2不同結構下的所放出的螢光,而 430 nm為Eu在Sr2B5O9Cl所放出的螢光。我們發現到Eu存在於某些成分組成的非晶質結構中,會比存在於Sr2B5O9Cl及SrCl2結構中更利於自發還原。
    並且發現到Cl離子的添加,有助於鍶硼矽基質中的Eu3+的自發還原,但是當樣品所提供負離子(Cl-)過多,會抵消 所形成的缺陷,使Eu3+還原量下降。

    This work investigated the spontaneous reduction behavior of Eu3+ to Eu2+ in in boron-alumino-silicate matrix heat-treated in air atmosphere. In the aluminosilicate system, 27Al NMR results showed that the addition of B ions induced a decrease of Al in 6-fold coordination (AlO6) that as a consequence restrained the occurrence of spontaneous reduction. In the boronsilicate system, the coexistance of Ca2+ or Sr2+ ions is necessary for the application of spontaneous reduction behavior of Eu3+ to Eu2+. In correlation between 11B NMR and photoluminescence results, more Eu2+ can be reduced when there is more B in structure of 4-fold coordination (BO4) because it provides a shielding effect to the Eu2+ ions and inhibits the re-oxidation. The unequivalent substitution of Eu3+ for the occupation sites of Sr2+ or Ca2+ also plays an important role for the spontaneous reduction. When Ca2+ is confined in pseudowollastonite (CaSiO3) crystal that is probably due to the structural imcompatibility of Eu2+ in CaSiO3, therefore no spontaneous reduction of Eu3+ was occurred even when there are sufficient amount of BO4. On the other hand, spontaneous reduction can be taken place in SrCl2, Sr2B5O9Cl crystals but also amorphous phase and Eu2+ in these phases exhibits respective photoluminescent characteristics. In this work we confirmed that the amount of the B in 4-fold coordination is not the only reason but the unequivalent substitution occurred with a certain amount of Ca2+ or Sr2+ ions is indispensable to induce the spontaneous reduction of Eu3+ to Eu2+. In addition, the calcination temperature and the concentration of Cl- ions also give effects on the spontaneous reduction of Eu3+ for the Sr-borosilicate system. The thermal treatment at various temperatures induces a change of phase compositions and as a results the emission properties vary. According to the curve fitting results, the emission of Eu2+ is in centered of 403 nm, 411-416 nm and 430 nm for Sr-borosilicate glass, SrCl2 and Sr2B5O9Cl crystals, respectively. Moreover, the spontaneous reduction is favorably occurred when Eu3+ is located in the amorphous phase rather than that confined in Sr2B5O9Cl and SrCl2 crystallized phases. Finally, the coexistence of Cl- ion in Sr-borosilicate matrix is crucial for the reduction process because the substitution of Cl- at the oxygen position may enlarge the lattice structure that is beneficial for the occupation of Eu2+ ions.

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究方向與目的 2 第二章 理論基礎與相關研究 4 2-1 螢光材料 4 2-1-1 螢光材料發光機制與原理 4 2-1-2 影響發光效率之因素 7 2-1-3 稀土離子 8 2-1-3-1 稀土離子之f-f電子躍遷 9 2-1-3-2 稀土離子之f-d電子躍遷 9 2-2 銪的螢光性質 11 2-2-1 主體結構效應 11 2-2-2 Eu3+的還原現象 14 2-2-3 影響Eu3+還原的因素 16 2-2-3-1 玻璃基質中光學鹽基度 16 2-2-3-2 外添加離子的配位數影響 17 2-2-3-3 添加Cl離子於結晶結構 20 2-3 螢光玻璃系統介紹 20 2-3-1 鋁矽酸鹽玻璃介紹 20 2-3-2 硼酸鹽玻璃介紹 20 2-3-3 硼矽酸鹽玻璃 22 2-3-4 添加鹼金或鹼土族離子之硼矽酸鹽玻璃 23 第三章 實驗方法及步驟 25 3-1 實驗原料 25 3-2 實驗流程 26 3-3 分析方法 31 3-3-1 光致發光光譜分析 31 3-3-2 X光繞射分析 32 3-3-3 NMR 固態核磁共振分析 32 3-3-4 X射線光電子能譜儀 32 第四章 結果與討論 33 4-1 B濃度對Al-B-Si玻璃中Eu3+自發還原的影響 33 4-1-1 Al、B配位數與Eu3+自發還原的關係 36 4-2 B/Si比例對(鈣、鍶)硼矽酸鹽系統螢光性質的影響 40 4-2-1 改變硼/矽比例對鈣硼矽酸鹽系統中結構與Eu3+還原的關係 45 4-2-2 改變硼/矽比例對鍶硼矽酸鹽系統中結構與Eu3+還原的關係 47 4-3 (Ca、Sr)離子濃度對硼矽酸鹽系統中螢光性質的影響 51 4-3-1 Ca離子濃度對硼矽酸鹽系統結構與Eu3+還原的關係 55 4-3-2 Sr離子濃度對硼矽酸鹽系統結構與Eu3+還原的關係 58 4-4 溫度對於鍶硼矽酸鹽系統中結構及螢光性質的影響 64 4-5 Cl離子濃度對鍶硼矽酸鹽系統中Eu3+自發還原的影響 70 4-6 CIE色度座標 73 第五章 結論 76 參考文獻 78 Fig. 2-1 光致發光過程示意圖。 6 Fig. 2-2螢光與磷光的放光過程示意圖。 6 Fig. 2-3稀土元素價數改變趨勢。 8 Fig. 2-4三價鑭系離子的能階[8]。 10 Fig. 2-5金屬d軌域及周圍配位基之相關位置圖。 13 Fig. 2-6 晶場與電子雲膨脹對於4f-5d軌域躍遷之影響。 14 Fig. 2-7極化效應示意圖。 14 Fig. 2-8不等價離子取代模型。 16 Fig. 2-9 EuB4O7結構投影圖。 19 Fig. 2-10 EuB2O4結構投影圖。 19 Fig. 2-11 BO結構單元基本構型{[BO3] (以△表示)、[BO4] (以□表示)}: (Ⅰ) 基本結構單元(△)和(□)以孤立形式存在於正硼酸鹽結構中);(Ⅱ.1 ) 組合基本結構單元,作為孤立陰離子存在於焦(pyro-)(a)和偏(meta-)(b)硼酸鹽中:(a) 2△和(b) 3△;(Ⅱ.2)組合基本結構單元形成網絡狀和框架結構聚集陰離子團: (a)2△+1□,(b)2△+2□, (c)4△+1□; (Ⅲ) 在網絡狀和框架結構多硼酸鹽結構中聚集陰離子團完整基本單元:(a) (2△+1□)+2(3△),(b) (4△ +1□)+(2△+2□),(c) (2△+1□)+( 2△+2□)+ 1□。 22 Fig. 2-12 (R2O, MO)-B2O3-SiO玻璃鹽基度與[BO4]含量比的關係。 24 Fig. 3-1 改變網絡成形劑之實驗流程圖。 28 Fig. 3-2 改變網絡修飾劑之實驗流程圖。 29 Fig. 3-3 改變催化劑及煆燒溫度之實驗流程圖。 30 Fig. 3-4 光譜儀設備示意圖。 31 Fig. 4-1 AB10-0樣品針對 425 nm所得的激發光譜。 34 Fig. 4-2 (AB10-0 – AB10-20)樣品以 340 nm激發之螢光光譜。 34 Fig. 4-3 AB10-0樣品針對 613 nm所得的激發光譜。 35 Fig. 4-4 (AB10-0 – AB10-20) 樣品以 395 nm激發之螢光光譜。 36 Fig. 4-5 (AB10-0 – AB10-20)樣品之27Al NMR光譜 38 Fig. 4-6 (AB10-0 – AB10-20)樣品中B含量與AlO6%及Eu2+/Eu3+的關係 38 Fig. 4-7 (AB10-5 – AB10-20) 樣品之11B NMR光譜 39 Fig. 4-8 (AB10-0 – AB10-20)樣品中B含量與([BO4]/([BO3]+[BO4])及Eu2+/Eu3+的關係 39 Fig. 4-9 (a) (CB5-20 – CB5-40) (b) (SB5-20 – SB5-40) 樣品以 340 nm激發所得之螢光光譜。 42 Fig. 4-10 CB5-40及SB5-40樣品分別針對 425 nm及 403 nm得到激發光譜。 43 Fig. 4-11 (a) (CB5-20 – CB5-40) (b) (SB5-20 – SB5-40)樣品以 395 nm激發之螢光光譜。 44 Fig. 4-12 (CB5-20 – CB5-40)樣品之11B NMR光譜。 46 Fig. 4-13 (CB5-20 – CB5-40)樣品中B含量與([BO4]/([BO3]+[BO4])及Eu2+/Eu3+的關係。 46 Fig. 4-14 (CB5-20 – CB5-40)粉末樣品XRD圖譜。 47 Fig. 4-15 (SB5-20 – SB5-40)樣品之11B NMR光譜 48 Fig. 4-16 (SB5-20 – SB5-40)樣品中B含量與([BO4]/([BO3]+[BO4])及Eu2+/Eu3+的關係。 49 Fig. 4-17 (SB5-20 – SB5-40)粉末樣品XRD圖譜。 50 Fig. 4-18 (B0-40 – CB20-40)樣品以(a) 340 nm (b) 395 nm,激發之螢光光譜。 52 Fig. 4-19 (B0-40 – SB20-40)樣品以(a) 340 nm (b) 395 nm,激發之螢光光譜。 54 Fig. 4-20 (B0-40 – CB20-40)樣品之11B NMR光譜。 56 Fig. 4-21 (B0-40 – CB20-40)樣品中 Ca含量與[BO4]/([BO3]+[BO4])及Eu2+/Eu3+的關係。 56 Fig. 4-22 (B0-40 – CB20-40)粉末樣品XRD圖譜。 58 Fig. 4-23 (B0-40 – SB20-40)樣品之11B NMR光譜。 59 Fig. 4-24 (B0-40 – SB20-40)樣品中Sr含量與([BO4]/([BO3]+[BO4])及Eu2+/Eu3+發光強度比的關係圖。 59 Fig. 4-25 (B0-40 – SB20-40)粉末樣品XRD圖譜。 61 Fig. 4-26 (SB5-40 – SB20-40)樣品以 340 nm激發後經過曲線擬合的結果。 62 Fig. 4-27 Eu2+三個放射峰位置以強度百分比對於Sr添加量作圖。 63 Fig. 4-28 Eu2+(4f65d1)軌域的能階分裂對應其放射峰位置及存在結構模擬圖。 63 Fig. 4-29 SB20-40 樣品於不同煆燒溫度下(600OC – 1000OC)針對 403 nm所得的激發光譜。 65 Fig. 4-30 SB20-40改變煆燒溫度(600OC – 1000OC)之樣品以 360 nm激發之螢光光譜。 66 Fig. 4-31 將SB20-40改變煆燒溫度(600OC – 1000OC)之樣品以 360 nm激發之螢光光譜經Normalized的結果。 66 Fig. 4-32 SB20-40 樣品於不同煆燒溫度下(600OC – 1000OC)以 360 nm激發後經曲線擬合的結果。 67 Fig. 4-33 SB20-40改變煆燒溫度(600OC – 1000OC)之樣品以 395 nm激發之螢光光譜。 68 Fig. 4-34 SB20-40樣品改變煆燒溫度(600OC – 1000OC)之XRD圖譜。 68 Fig. 4-35 SB20-40樣品改變煆燒溫度(600OC – 1000OC)之XPS圖譜 69 Fig. 4-36 SB20-40改變催化劑含量之樣品以 340 nm激發之螢光光譜。 71 Fig. 4-37 SB20-40改變催化劑含量之樣品以 395 nm激發之螢光光譜。 71 Fig. 4-38 (SB20-40)樣品改變催化劑含量之XRD圖譜。 72 Fig. 4-39 CB15-40樣品以不同激發波長(340, 360, 380, 395 nm)得到色度座標圖。 73 Fig. 4-40 SB5-40樣品以不同激發波長(340, 360, 380, 395 nm)得到色度座標圖。 74 Fig. 4-41以 365 nm激發(CB5-40 – CB20-40)得到色度座標圖。 74 Fig. 4-42以 365 nm激發(SB5-40 – SB20-40)得到色度座標圖。 75 Table. 2-1 含B化合物中稀土離子於空氣中自發還原整理 19 Table. 3-1實驗藥品純度及品牌。 25 Table. 3-2成分組成及其樣品代號 27

    [1] 潘瑋, “銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討”, 國立成功大學資源工程研究所碩士論文, 2012。
    [2] Z. W. Pei, Q. Su and J. Y. Zang, “The valence change from RE3+ to RE2+ (RE= Eu, Sm, Yb) in SrB4O7: RE prepared in air and the spectral properties of RE2+”, J. Alloy. Compd., 198, 51-53 (1993).
    [3] T. Nanba, S. Sakida and Y. Miur, “Regression analysis on the amount of tetrahedral boron in borosilicate glasses”, J. Mater. Sci. Tech., 1, 535-544 (2006).
    [4] G. Blasse, B. C. Grabmaier, Luminescent. Materials, Springer-Verlag, Berlin (1994).
    [5] J. A. De Luca, “An introduction to luminescence in inorganic solids”, J.Chem. Educ., 57, 541-545 (1980).
    [6] 張永政, “矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究”, 國立成功大學材料科學及工程學系碩士論文, 2010。
    [7] S. Shionoya, W. M. Yen (Eds.), Phosphor Handbook, CRC Press, New York (1999).
    [8] R. C. Ropp, “Luminescence and the Solid State”, 2nd ed, Amsterdam, 2004.
    [9] M. Nogami, K. Watanabe and Y. Ito, “Hydrogen gas reaction with Eu3+-doped Al2O3–SiO2 glasses ”, J. Am. Ceram. Soc., 93, 1663-1667 (2010).
    [10] Z. W. Pei, Q. H. Zeng and Q. Su, “The application and a substitution defect model for Eu3+→Eu2+ reduction in non-reducing atmospheres in borates containing BO4 anion groups”, J. Phys. Chem., 61, 9-12 (2000).
    [11] 蘇鏘,“稀土元素”,北京,清華大學出版社, 2000。
    [12] E. Douglas, D. H. Mc Daniel, J. J. Alexander, “Concepts and Models of
    Inorganic Chemistry-3rd”, John Wiley & Sons Inc., New York (1994).
    [13] M. Nogami, Y. Abe, “Properties of sol-gel derived Al2O3 -SiO2 glasses using Eu3+ ion fluorescence spectra” J. Non-Cryst. Solids., 197, 73-78 (1996).
    [14] A. Biswas, C.S.Friend and P.N. Prasad, “Spontaneous reduction of Eu3+ ion in Al co-doped sol–gel silica matrix during densification ”, J. Mater. Lett., 39, 227-231 (1999).
    [15] N. Kamata, K. Tosaka, Z. Honda and K. Yamada, Jpn, “Formation of Eu2+ in SiO2-Al2O3 glass during thermal treatment in sol-gel process”, J. Appl. Phys., 43, 372-374 (2004).
    [16] N. Kamata, C. Satoh, K. Tosaka and K. Yamada, “Blue-emission and energy transfer characteristics of Eu-doped sol-gel glasses without post processing”, J. Non-Cryst. Solids, 293, 595-599 (2001).
    [17] J. H. Zhao, J. Gao, “Abnormal reduction of Eu ions and luminescence in CaB2O4: Eu thin films”, Appl. Phys. Lett., 85(17), 3720-3722 (2004).
    [18] M. Y. Peng, Z. Pei, G. Hong and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4: Eu prepared in air and the luminescence of BaMgSiO4 :Eu2+ phosphor”, J. Mater. Chem., 13, 1202-1205 (2003).
    [19] Z. H. Lian, J. Wang, Y. H. Lv, S. B. Wang and Q. Su, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses”, J. Alloy. Compd., 430, 257-261 (2007).
    [20] C. Wang, M. Y. Peng, J. N. Jiang. X. W. Jiang, C. J. Zhao and J. R. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions”, Mater. Lett., 61, 3608-3611 (2007).
    [21] Q. Zhang, X. F. Liu, Y. B. Qiao, G. P. Dong, J. Ruan, Q. L. Zhou, J. R. Qiu and D. P. Chen, “Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere”, J. Opt. Mater., 32, 427-431 (2010).
    [22] J. Jin, S. Sakida, T. Yoko and M. Nogami, “The local structure of Sm-doped aluminosilicate glasses prepared by sol-gel method”, J. Non-Cryst. Solids, 262, 183-190 (2000)
    [23] C. F. Zhu, Y. X. Yang and X. L. Liang, “ Photoluminescence properties of rare earth ion-doped borosilicate glasses for white led applications”, J. Chines. Ceram. Soc. 35(10)., 1401-1405 (2007).
    [24] K. Machida, G. Adachi and J Shiokawa, “Structure of europium(II) tetraborate”, Acta Cryst., B36, 2008-2011 (1980).
    [25] K. Machida, G. Adachi and J Shiokawa, “Structure of divalent-europium metaborate”, Acta. Cryst. B., 35, 149-151 (1979).
    [26] Q. H. Zeng, Z. W. Pei, “Luminescent properties of divalent samarium-doped strontium hexaborate”, Chem. Mater., 11, 605-611 (1999).
    [27] Q. H. Zeng, Z. W. Pei, S. B. Wang and Q. Su, “The reduction of RE3+ in SrB6O10 prepared in air and the luminescence of SrB6O10: RE2+ (RE=Eu, Sm, Tm)”, J. Spectrochim. Acta., 32(6), 895-912 (1999).
    [28] Q. Su, Q. H. Zeng and Z. W. Pei, “Preparation of borates doped with divalent rare earth ions (RE2+) in air and spectroscopy of divalent rare earth ions (RE2+= Sm, Eu, Tm, Yb)”, Chin. J. Inorg. Chem., 16, 293-298 (2000).
    [29] H. B. Liang, Q. Su and Y. Tao, T. D. Hu and T. Liu, “VUV excited luminescence of europium activated calcium borophosphate prepared in air ”, J. Alloy. Compd., 334(1-2), 293-298 (2002).
    [30] H. Q. Jing, G. Q. Wu and B. S. Du, “Preparation of phosphors MBPO5:Eu2+ and MBPO5:Yb2+ in air”, Chem. J. Chin., Universities., 18, 1425-1432 (1997).
    [31] F. Le, L. Wang, W. Jia, D. Jia and S. Bao, “Synthesis and photoluminescence of Eu2+ by co-doping Eu3+ and Cl− in Sr2P2O7 under air atmosphere”, J. Alloy. Compd., 512, 323-327 (2012).
    [32] H. Aguiar, J. Serra, P. Gonzalez and B. Leon, “Structural study of sol–gel silicate glasses by IR and Raman spectroscopies”, J. Non-Cryst. Solids., 355, 475-480 (2009).
    [33] N. I. Leonyuk, “Structural aspects in crystal growth of anhydrous borates”, J. Cryst. Growth., 174(1-4), 301-307 (1997).
    [34] S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air”, J. Am Ceram. Soc., 91(8), 2740-2742 (2008).
    [35] J. H. Lee, Y. J. Kim, “Photoluminescent properties of. Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method”, Mater. Sci. Eng. B., 146, 99-102 (2008).
    [36] D Hreniak, M Jasiorski, K Maruszewski, L Kepinski, L Krajczyk and J Misiewicz, W Strek, “Nature and optical behaviour of heavily europium-doped silica glasses obtained by the sol–gel method”, J. Non-Cryst. Solids., 298, 146–152 (2002).
    [37] R. Martens, W. Muller-Warmuth, W, “Structural groups and their mixing in borosilicate glasses of various compositions an NMR study”, J. Non-Cryst. Solids., 265(1), 167-175 (2000).
    [38] L Forni, G Fornasari, C Tosi, F Trifiro, A Vaccari, F Dumeignil, J Grimblot., J. Appl, “Non-conventional sol–gel synthesis for the production of boron-alumina catalyst applied to the vapour phase Beckmann rearrangement”, J. Cataly. A, 248, 47-57 (2003).
    [39] S. Liu, H. He, Z. Luan, J. Klinowski, “Solid-state NMR studies of the borosilicate mesoporous molecular sieve MCM-41”, J. Chem. Soc. 92, 2011-2015 (1996).
    [40] C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition”, J. Solid State Chem., 182(7), 1673–1678 (2009).
    [41] H. Doweidar, Y. M. Moustafa, S. Abd El-Maksoud and H. Silim, “Properties of Na2O–Al2O3–B2O3 glasses”, J. Mater. Sci. Eng. A., 301, 207-212 (2001).
    [42] Z. W. Pei, Q. H. Zeng and Q. Su, “Effect of γ-ray irradiation on structures and luminescent properties of nanocrystalline MSO4:xEu3+ (M=Ca,Sr,Ba; x=0.001-0.005) ”, J. Phys. Chem. Solids., 61(1), 9-12 (2000).
    [43] 賀香紅, 余錫賓, 周春蕾, 丁雲峰, “鹼金屬離子對SrCl2:Eu2+發光性能的影響”, 上海師範大學學報,32(4),52-56 (2003).

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE