| 研究生: |
林慧姍 Lin, Hui-Shan |
|---|---|
| 論文名稱: |
探討晨間護理對出生週數30週以下早產兒腦血氧之影響 Explore the impact of morning care on cerebral oxygenation in infants of less than 30 weeks gestation |
| 指導教授: |
黃美智
Huang, Mei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 護理學系 Department of Nursing |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 早產兒 、晨間護理 、腦血氧 |
| 外文關鍵詞: | preterm infants, morning care, cerebral oxygenation, rScO2 |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:早產兒早期壓力經驗、腦血氧波動皆與未來神經發展障礙有關。屬複合性壓
力處置的晨間護理是新生兒加護病房常規,對脆弱的出生週數 30 週以下早產兒腦血
氧之影響卻仍未知。本研究旨在探討晨間護理對出生週數 30 週以下早產兒腦血氧之
影響及其相關因素,提供未來修正照護流程之參考。
方法:於南部某醫學中心新生兒加護病房採方便取樣法,納入姙娠週數小於 30 週且
出生天數在 14 天內執行晨間護理(含測量體重)者,排除先天性異常者與當天更換保
溫箱的晨間護理;在 14 天內至多收集五次晨間護理數據,且每次測量至少間隔兩
天。採前瞻式觀察法,藉由近紅外線光譜儀(near-infrared spectroscopy, NIRS) 觀察出
生週數 30 週以下早產兒在晨間護理過程前、中、後之腦血氧(rScO2)的連續變化,並
搭配數位影像進行紀錄。收集晨間護理前 10 分鐘之 rScO2、血氧飽和濃度(SpO2)基
準值,以及晨間護理過程與結束後 10 分鐘之數據。研究結果以廣義估計方程式、簡
單線性迴歸分析、史皮爾曼相關係數及 k-means for longitudinal data (kml)進行分析。
結果:自 2021 年 3 月 8 日到 2022 年 4 月 1 日,共納入 11 位早產兒,完成 32 次晨
間護理觀察數據,資料收集時間平均為出生後第 8 天,矯正週數平均為 26 週。結果
顯示晨間護理過程中之 rScO2 顯著低於基準值(p<0.001),在身體清潔、測量體重、
翻身擺位時也分別顯著低於基準值。男嬰、疾病嚴重度較高、合併腦室內出血第二
級以上者,其整體 rScO2 較低;在基準值時,出生後天數及矯正週數對 rScO2 有不同
影響,但進入晨間護理時出生後天數及矯正週數則不會影響 rScO2 趨勢。SpO2 在晨
間護理過程中顯著低於晨間護理前的基準值(p<0.001),在身體清潔、測量體重、翻
身擺位時則與基準值沒有差異,整體趨勢變化不會因基本人口學不同而有差異。而
rScO2 與 SpO2 在晨間護理過程呈現中度正相關(R2=0.613, p<0.001),且 Spearman rho 係數為 0.698 (p<0.001)。
結論:複合性壓力處置的晨間護理會影響出生週數 30 週以下早產兒的 rScO2 與
SpO2,晨間護理中的單一護理措施不會影響 SpO2 但會影響 rScO2。
INTRODUCTION
Early-life stress experiences and cerebral oxygenation fluctuation events in very preterm infants are related to neurodevelopment impairment in early childhood. Morning care, considered a complex stressor, impacts cerebral oxygenation(rScO2) in these vulnerable infants. Despite being a nursing routine in the neonatal intensive care unit, the impact of morning care on cerebral oxygenation in very preterm infants has not yet been fully understood. This study aims to investigate the effect of morning care on cerebral oxygenation and other associated factors in preterm infants less than 30 weeks gestational age. The goal is to use the findings to develop guidelines for modifying care practices.
MATERIALS AND METHOD
This is a prospective observational study that aims to examine the change in cerebral oxygenation in very preterm infants using near-infrared spectroscopy (NIRS) before, during, and after morning care over a period of time. The study was conducted in a neonatal intensive care unit in a medical center at southern Taiwan. The enrolled infants were recruited through convenience sampling method by the criteria of less than 30 weeks gestational age and excluded with congenital abnormalities. The researcher observed the morning care process and collected data no more than five times for the same participant within 14 days. Each measurement was separated over two days. The baseline values of cerebral oxygenation and oxygen saturation 10 minutes before and 10 minutes after the morning care were collected. The repeated measure data were analyzed using generalized estimating equations (GEE), simple linear regression, and k-means for longitudinal data (kml) to answer the research questions.
RESULT
The study enrolled 11 premature infants and analyzed 32 observations between 8th March, 2021 to 1st April, 2022. The average data collection days was 8 days after birth, and the average postmenstrual age was 26 weeks. The results found that cerebral oxygenation levels were significantly lower during the morning care process than the baseline values before morning care (p<0.001). Compared to the baseline values, there were significantly lower during body cleaning, measuring weight, and turning position, respectively. The overall rScO2 was lower in male preterm infants, more severe illnesses and at least grade 2 intraventricular hemorrhage. The postnatal days and postmenstrual age affected the rScO2 at the baseline but did not affect the rScO2 trend during morning care. The oxygen saturation (SpO2) during the morning care process was also significantly lower than the baseline value before the morning care (p<0.001). However, there was no difference between the baseline value and the value during the period of body cleaning, weighing, and positioning. The overall trend of the results did not show significant differences based on the basic demographic characteristics of the participants. The study found that the rScO2 and SpO2 during the morning care process were moderately positively correlated (R2 = 0.613, p<0.001) and the Spearman's rho coefficient was 0.698 (p<0.001).
CONCLUSION
The study findings suggest that morning care, as a complex stress intervention, has an impact on the cerebral oxygenation (rScO2) and oxygen saturation (SpO2) of preterm infants born before 30 weeks of gestational age. The results indicated that while individual interventions during morning care, such as body cleaning, weighing, and positioning, do not affect the SpO2, but it does affect rScO2.
Alderliesten, T., Dix, L., Baerts, W., Caicedo, A., Van Huffel, S., Naulaers, G., Groenendaal, F., van Bel, F., & Lemmers, P. (2016). Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatric Research, 79(1-1), 55-64. https://doi.org/10.1038/pr.2015.186
Alderliesten, T., Lemmers, P. M., van Haastert, I. C., de Vries, L. S., Bonestroo, H. J., Baerts, W., & van Bel, F. (2014). Hypotension in preterm neonates: Low blood pressure alone does not affect neurodevelopmental outcome. The Journal of Pediatrics, 164(5), 986-991. https://doi.org/10.1016/j.jpeds.2013.12.042
Alderliesten, T., Lemmers, P. M. A., Smarius, J. J. M., Van De Vosse, R. E., Baerts, W., & Van Bel, F. (2013). Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. Journal of Pediatrics, 162(4), 698-704.e692. https://doi.org/10.1016/j.jpeds.2012.09.038
Alderliesten, T., van Bel, F., van der Aa, N. E., Steendijk, P., van Haastert, I. C., de Vries, L. S., Groenendaal, F., & Lemmers, P. (2018). Low cerebral oxygenation in preterm infants is associated with adverse neurodevelopmental outcome. Journal of Pediatrics, 207, 109-116.e102. https://doi.org/10.1016/j.jpeds.2018.11.038
Altimier, L., & Phillips, R. (2016). The neonatal integrative developmental care model: Advanced clinical applications of the seven core measures for neuroprotective family-centered developmental care. Newborn and Infant Nursing Reviews, 16(4), 230-244. https://doi.org/10.1053/j.nainr.2016.09.030
Ancora, G., Maranella, E., Aceti, A., Pierantoni, L., Grandi, S., Corvaglia, L., & Faldella, G. (2010). Effect of posture on brain hemodynamics in preterm newborns not mechanically ventilated. Neonatology, 97(3), 212-217. https://doi.org/10.1159/000253149
Bartocci, M., Bergqvist, L. L., Lagercrantz, H., & Anand, K. J. S. (2006). Pain activates cortical areas in the preterm newborn brain. Pain, 122(1), 109-117. https://doi.org/10.1016/j.pain.2006.01.015
Begum, E. A., Bonno, M., Ohtani, N., Yamashita, S., Tanaka, S., Yamamoto, H., Kawai, M., & Komada, Y. (2008). Cerebral oxygenation responses during kangaroo care in low birth weight infants. BMC Pediatrics, 8, 51. https://doi.org/10.1186/1471-2431-8-51
Bembich, S., Fiani, G., Strajn, T., Sanesi, C., Demarini, S., & Sanson, G. (2017). Longitudinal responses to weighing and bathing procedures in preterm infants. The Journal of Perinatal & Neonatal Nursing, 31(1), 67-74. https://doi.org/10.1097/JPN.0000000000000228
Bernert, G., von Siebenthal, K., Seidl, R., Vanhole, C., Devlieger, H., & Casaer, P. (1997). The effect of behavioural states on cerebral oxygenation during endotracheal suctioning of preterm babies. Neuropediatrics, 28(2), 111-115. https://doi.org/10.1055/s-2007-973682
Bonestroo, H. J., Lemmers, P. M., Baerts, W., & van Bel, F. (2011). Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics, 128(6), e1502-e1510. https://doi.org/10.1542/peds.2010-3791
Brazy, J. E. (1988). Effects of crying on cerebral blood volume and cytochrome aa3. The Journal of Pediatrics, 112(3), 457-461. https://doi.org/10.1016/S0022-3476(88)80336-6
Bremmer, P., Byers, J. F., & Kiehl, E. (2003). Noise and the premature infant: Physiological effects and practice implications. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 32(4), 447-454. https://doi.org/10.1177/0884217503255009
Carbajal, R., Rousset, A., Danan, C., Coquery, S., Nolent, P., Ducrocq, S., Saizou, C., Lapillonne, A., Granier, M., Durand, P., Lenclen, R., Coursol, A., Hubert, P., de Saint Blanquat, L., Boëlle, P.-Y., Annequin, D., Cimerman, P., Anand, K. J. S., & Bréart, G. (2008). Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA, 300(1), 60-70. https://doi.org/10.1001/jama.300.1.60
Catelin, C., Tordjman, S., Morin, V., Oger, E., & Sizun, J. (2005). Clinical, physiologic, and biologic impact of environmental and behavioral interventions in neonates during a routine nursing procedure. Journal of Pain, 6(12), 791-797. https://doi.org/10.1016/j.jpain.2005.07.010
Dix, L. M. L., Molenschot, M., Breur, J., de Vries, W., Vijlbrief, D., Groenendaal, F., Van Bel, F., & Lemmers, P. (2016). Cerebral oxygenation and echocardiographic parameters in preterm neonates with a patent ductus arteriosus: An observational study. Archives of Disease in Childhood-Fetal and Neonatal Edition, 101(6), F520-F526. https://doi.org/10.1136/archdischild-2015-309192
Dix, L. M. L., van Bel, F., & Lemmers, P. M. (2017). Monitoring cerebral oxygenation in neonates: An update. Frontiers in Pediatrics, 5, 46. https://doi.org/10.3389/fped.2017.00046
Dix, L. M. L., Weeke, L. C., de Vries, L. S., Groenendaal, F., Baerts, W., van Bel, F., & Lemmers, P. M. A. (2017). Carbon dioxide fluctuations are associated with changes in cerebral oxygenation and electrical activity in infants born preterm. The Journal of Pediatrics, 187, 66-72. e61. https://doi.org/10.1016/j.jpeds.2017.04.043
Fernández, D., & Antolín-Rodríguez, R. (2018). Bathing a premature infant in the intensive care unit: A systematic review. Journal of Pediatric Nursing, 42, e52-e57. https://doi.org/10.1016/j.pedn.2018.05.002
Genolini, C., Alacoque, X., Sentenac, M., & Arnaud, C. (2015). kml and kml3d: R packages to cluster longitudinal data. Journal of Statistical Software, 65, 1-34. https://doi.org/10.18637/jss.v065.i04
Genolini, C., & Falissard, B. (2010). KmL: k-means for longitudinal data. Computational Statistics, 25(2), 317-328. https://doi.org/10.1007/s00180-009-0178-4
Genolini, C., & Falissard, B. (2011). Kml: A package to cluster longitudinal data. Computer Methods and Programs in Biomedicine, 104(3), e112-e121. https://doi.org/10.1016/j.cmpb.2011.05.008
Gibbins, S., Stevens, B., McGrath, P. J., Yamada, J., Beyene, J., Breau, L., Camfield, C., Finley, A., Franck, L., & Johnston, C. (2008). Comparison of pain responses in infants of different gestational ages. Neonatology, 93(1), 10-18. https://doi.org/10.1159/000105520
Gleason, C. A., & Juul, S. E. (2018a). Cardiovascular compromise in the newborn. In S. Noori, T. Azhibekov, B. Lee, & I. Seri (Eds.), Avery’s diseases of the newborn (10th ed., pp. 944-976). Elsevier.
Gleason, C. A., & Juul, S. E. (2018b). Neonatal neuroimaging. In J. J. Neil & T. E. Inder (Eds.), Avery’s diseases of the newborn (10th ed., pp. 1168-1202). Elsevier.
González‐Cabello, H., Furuya, M. E., Vargas, M. H., Tudón, H., Garduño, J., & González‐Ayala, J. (2005). Evaluation of antihypoxemic maneuvers before tracheal aspiration in mechanically ventilated newborns. Pediatric Pulmonology, 39(1), 46-50. https://doi.org/10.1002/ppul.20130
Greisen, G. (2005). Autoregulation of cerebral blood flow in newborn babies. Early Human Development, 81(5), 423-428. https://doi.org/10.1016/j.earlhumdev.2005.03.005
Helenius, K., Sjörs, G., Shah, P. S., Modi, N., Reichman, B., Morisaki, N., Kusuda, S., Lui, K., Darlow, B. A., & Bassler, D. (2017). Survival in very preterm infants: an international comparison of 10 national neonatal networks. Pediatrics, 140(6), e20171264. https://doi.org/10.1542/peds.2017-1264
Hwang, M. J., & Seol, G. H. (2015). Cerebral oxygenation and pain of heel blood sampling using manual and automatic lancets in premature infants. The Journal of Perinatal & Neonatal Nursing, 29(4), 356-362. https://doi.org/10.1097/JPN.0000000000000138
Hyttel-Sorensen, S., Austin, T., van Bel, F., Benders, M., Claris, O., Dempsey, E. M., Fumagalli, M., Gluud, C., Hagmann, C., Hellstrom-Westas, L., Lemmers, P., Naulaers, G., van Oeveren, W., Pellicer, A., Pichler, G., Roll, C., Stoy, L. S., Wolf, M., & Greisen, G. (2013). Clinical use of cerebral oximetry in extremely preterm infants is feasible. Danish Medical Journal, 60(1), A4533.
Janaillac, M., Beausoleil, T. P., Barrington, K. J., Raboisson, M.-J., Karam, O., Dehaes, M., & Lapointe, A. (2018). Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. European Journal of Pediatrics, 177(4), 541-550. https://doi.org/10.1007/s00431-018-3096-z
Katheria, A. C., Stout, J., Morales, A. L., Poeltler, D., Rich, W. D., Steen, J., Nuzzo, S., & Finer, N. (2021). Association between early cerebral oxygenation and neurodevelopmental impairment or death in premature infants. Journal of Perinatology, 41(4), 743-748. https://doi.org/10.1038/s41372-021-00942-w
Kaya, T. B., Aydemir, O., & Tekin, A. N. (2019). Prone versus supine position for regional cerebral tissue oxygenation in preterm neonates receiving noninvasive ventilation. Journal of Maternal-Fetal & Neonatal Medicine, 1-6. https://doi.org/10.1080/14767058.2019.1678133
Lee, H. K. (2002). Effects of sponge bathing on vagal tone and behavioural responses in premature infants. Journal of Clinical Nursing, 11(4), 510-519.
Lemmers, P. M., Benders, M. J., D’Ascenzo, R., Zethof, J., Alderliesten, T., Kersbergen, K. J., Isgum, I., de Vries, L. S., Groenendaal, F., & van Bel, F. (2016). Patent ductus arteriosus and brain volume. Pediatrics, 137(4). https://doi.org/10.1542/peds.2015-3090
Lemmers, P. M., Toet, M. C., & van Bel, F. (2008). Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics, 121(1), 142-147. https://doi.org/10.1542/peds.2007-0925
Liao, M. C. S., Rao, R., & Mathur, A. M. (2015). Head position change is not associated with acute changes in bilateral cerebral oxygenation in stable preterm infants during the first 3 days of life. American Journal of Perinatology, 32(7), 645-651. https://doi.org/10.1055/s-0034-1390348
Liaw, J.-J., Yang, L., Chou, H.-L., Yang, M.-H., & Chao, S.-C. (2010). Relationships between nurse care-giving behaviours and preterm infant responses during bathing: A preliminary study. Journal of Clinical Nursing, 19(1‐2), 89-99. https://doi.org/10.1111/j.1365-2702.2009.03038.x
Limperopoulos, C., Gauvreau, K. K., O'Leary, H., Moore, M., Bassan, H., Eichenwald, E. C., Soul, J. S., Ringer, S. A., Di Salvo, D. N., & du Plessis, A. J. (2008). Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics, 122(5), e1006-e1013. https://doi.org/10.1542/peds.2008-0768
Lorenz, L., Dawson, J. A., Jones, H., Jacobs, S. E., Cheong, J. L., Donath, S. M., Davis, P. G., & Kamlin, C. O. F. (2017). Skin-to-skin care in preterm infants receiving respiratory support does not lead to physiological instability. Archives of Disease in Childhood: Fetal and Neonatal Edition, 102(4), F339-f344. https://doi.org/10.1136/archdischild-2016-311752
Lorenz, L., Marulli, A., Dawson, J. A., Owen, L. S., Manley, B. J., Donath, S. M., Davis, P. G., & Kamlin, C. O. F. (2018). Cerebral oxygenation during skin-to-skin care in preterm infants not receiving respiratory support. Archives of Disease in Childhood: Fetal and Neonatal Edition, 103(2), F137-F142. https://doi.org/10.1136/archdischild-2016-312471
Marin, T., & Moore, J. (2011). Understanding near-infrared spectroscopy. Advances in Neonatal Care, 11(6), 382-388. https://doi.org/10.1097/ANC.0b013e3182337ebb
Mayer, B., Pohl, M., Hummler, H. D., & Schmid, M. B. (2017). Cerebral oxygenation and desaturations in preterm infants–a longitudinal data analysis. Journal of Neonatal-Perinatal Medicine, 10(3), 267-273. https://doi.org/10.3233/NPM-16124
Milan, A., Freato, F., Vanzo, V., Chiandetti, L., & Zaramella, P. (2009). Influence of ventilation mode on neonatal cerebral blood flow and volume. Early Human Development, 85(7), 415-419. https://doi.org/10.1016/j.earlhumdev.2009.01.008
Milgrom, J., Martin, P. R., Newnham, C., Holt, C. J., Anderson, P. J., Hunt, R. W., Reece, J., Ferretti, C., Achenbach, T., & Gemmill, A. W. (2019). Behavioural and cognitive outcomes following an early stress-reduction intervention for very preterm and extremely preterm infants. Pediatric Research, 86(1), 92-99. https://doi.org/10.1038/s41390-019-0385-9
Mintzer, J. P., & Moore, J. E. (2019). Regional tissue oxygenation monitoring in the neonatal intensive care unit: evidence for clinical strategies and future directions. Pediatric Research, 86(3), 296-304. https://doi.org/10.1038/s41390-019-0466-9
Mohamed, M. A., Frasketi, M. J., Aly, S., El-Dib, M., Hoffman, H. J., & Aly, H. (2021). Changes in cerebral tissue oxygenation and fractional oxygen extraction with gestational age and postnatal maturation in preterm infants. Journal of Perinatology, 41(4), 836-842. https://doi.org/10.1038/s41372-020-00794-w
Nist, M. D., Harrison, T. M., & Steward, D. K. (2018). The biological embedding of neonatal stress exposure: A conceptual model describing the mechanisms of stress-induced neurodevelopmental impairment in preterm infants. Research in Nursing and Health, 42(1), 61-71. https://doi.org/10.1002/nur.21923
Noone, M. A., Sellwood, M., Meek, J. H., & Wyatt, J. S. (2003). Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. Acta Paediatrica, 92(9), 1079-1084. https://doi.org/10.1111/j.1651-2227.2003.tb02581.x
Pellicer, A., Greisen, G., Benders, M., Claris, O., Dempsey, E., Fumagalli, M., Gluud, C., Hagmann, C., Hellstrom-Westas, L., Hyttel-Sorensen, S., Lemmers, P., Naulaers, G., Pichler, G., Roll, C., van Bel, F., van Oeveren, W., Skoog, M., Wolf, M., & Austin, T. (2013). The SafeBoosC phase II randomised clinical trial: A treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology, 104(3), 171-178. https://doi.org/10.1159/000351346
Peng, N.-H., Bachman, J., Jenkins, R., Chen, C.-H., Chang, Y.-C., Chang, Y.-S., & Wang, T.-M. (2009). Relationships between environmental stressors and stress biobehavioral responses of preterm infants in NICU. The Journal of Perinatal & Neonatal Nursing, 23(4). https://doi.org/10.1097/JPN.0b013e3181bdd3fd
Peters, K. L. (1998). Bathing premature infants: Physiological and behavioral consequences. American Journal of Critical Care, 7(2), 90.
Plomgaard, A. M., Hagmann, C., Alderliesten, T., Austin, T., van Bel, F., Claris, O., Dempsey, E., Franz, A., Fumagalli, M., Gluud, C., Greisen, G., Hyttel-Sorensen, S., Lemmers, P., Pellicer, A., Pichler, G., & Benders, M. (2016). Brain injury in the international multicenter randomized SafeBoosC phase II feasibility trial: Cranial ultrasound and magnetic resonance imaging assessments. Pediatric Research, 79(3), 466-472. https://doi.org/10.1038/pr.2015.239
Plomgaard, A. M., van Oeveren, W., Petersen, T. H., Alderliesten, T., Austin, T., van Bel, F., Benders, M., Claris, O., Dempsey, E., Franz, A., Fumagalli, M., Gluud, C., Hagmann, C., Hyttel-Sorensen, S., Lemmers, P., Pellicer, A., Pichler, G., Winkel, P., & Greisen, G. (2016). The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatric Research, 79(4), 528. https://doi.org/10.1038/pr.2015.266
Ravarian, A., Nariman, S., Noori, F., Ershadi, F. S., Shahrokhi, A., Noroozi, M., & Vameghi, R. (2017). Cerebral tissue oxygenation in postural changes in mechanically ventilated preterm newborns less than 72 hours after birth. Iranian Journal of Pediatrics, 27(5). https://doi.org/10.5812/ijp.12405
Rogers, E. E., & Hintz, S. R. (2016). Early neurodevelopmental outcomes of extremely preterm infants. Seminars in Perinatology, 40(8), 497-509. https://doi.org/10.1053/j.semperi.2016.09.002
Schrod, L., & Walter, J. (2002). Effect of head-up body tilt position on autonomic function and cerebral oxygenation in preterm infants. Biology of the Neonate, 81(4), 255-259. https://doi.org/10.1159/000056756
Seidel, D., Bläser, A., Gebauer, C., Pulzer, F., Thome, U., & Knüpfer, M. (2013). Changes in regional tissue oxygenation saturation and desaturations after red blood cell transfusion in preterm infants. Journal of Perinatology, 33(4), 282-287. https://doi.org/10.1038/jp.2012.108
Skov, L., Ryding, J., Pryds, O., & Greisen, G. (1992). Changes in cerebral oxygenation and cerebral blood volume during endotracheal suctioning in ventilated neonates. Acta Paediatrica, International Journal of Paediatrics, 81(5), 389-393.
Smith, G. C., Gutovich, J., Smyser, C., Pineda, R., Newnham, C., Tjoeng, T. H., Vavasseur, C., Wallendorf, M., Neil, J., & Inder, T. (2011). Neonatal intensive care unit stress is associated with brain development in preterm infants. Annals of Neurology, 70(4), 541-549. https://doi.org/10.1002/ana.22545
Sood, B. G., McLaughlin, K., & Cortez, J. (2015). Near-infrared spectroscopy: Applications in neonates. Seminars in Fetal & Neonatal Medicine, 20(3), 164-172. https://doi.org/10.1016/j.siny.2015.03.008
Sortica da Costa, C., Cardim, D., Molnar, Z., Kelsall, W., Ng, I., Czosnyka, M., Smielewski, P., & Austin, T. (2019). Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatric Research, 86(2), 247-253. https://doi.org/10.1038/s41390-019-0410-z
Spengler, D., Loewe, E., & Krause, M. F. (2018). Supine vs. prone position with turn of the head does not affect cerebral perfusion and oxygenation in stable preterm infants ≦32 weeks gestational age. Frontiers in Physiology, 9, 1664. https://doi.org/10.3389/fphys.2018.01664
Stevens, B., McGrath, P., Gibbins, S., Beyene, J., Breau, L., Camfield, C., Finley, A., Franck, L., Howlett, A., & Johnston, C. (2007). Determining behavioural and physiological responses to pain in infants at risk for neurological impairment. Pain, 127(1-2), 94-102. https://doi.org/10.1016/j.pain.2006.08.012
Su, B. H., Hsieh, W. S., Hsu, C. H., Chang, J. H., Lien, R., Lin, C. H., & Taiwan, P. B. F. o. (2015). Neonatal outcomes of extremely preterm infants from taiwan: Comparison with Canada, Japan, and the USA. Pediatrics and Neonatology, 56(1), 46-52. https://doi.org/10.1016/j.pedneo.2014.05.002
Takami, T., Sunohara, D., Kondo, A., Mizukaki, N., Suganami, Y., Takei, Y., Miyajima, T., & Hoshika, A. (2010). Changes in cerebral perfusion in extremely LBW infants during the first 72 h after birth. Pediatric Research, 68(5), 435-439. https://doi.org/10.1203/PDR.0b013e3181f2bd4d
Tsuji, M., Saul, J. P., du Plessis, A., Eichenwald, E., Sobh, J., Crocker, R., & Volpe, J. J. (2000). Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics, 106(4), 625.
Valeri, B. O., Holsti, L., & Linhares, M. B. M. (2015). Neonatal pain and developmental outcomes in children born preterm: A systematic review. The Clinical Journal of Pain, 31(4). https://doi.org/10.1097/AJP.0000000000000114
van Bel, F., & Mintzer, J. P. (2018). Monitoring cerebral oxygenation of the immature brain: a neuroprotective strategy? Pediatric Research, 84(2), 159-164. https://doi.org/10.1038/s41390-018-0026-8
van Hoften, J. C., Verhagen, E. A., Keating, P., ter Horst, H. J., & Bos, A. F. (2010). Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Archives of Disease in Childhood-Fetal and Neonatal Edition, 95(5), F352-F358. https://doi.org/10.1136/adc.2009.163592
Vanderhaegen, J., Naulaers, G., Vanhole, C., De Smet, D., Van Huffel, S., Vanhaesebrouck, S., & Devlieger, H. (2009). The effect of changes in tPCO2 on the fractional tissue oxygen extraction – as measured by near-infrared spectroscopy – in neonates during the first days of life. European Journal of Paediatric Neurology, 13(2), 128-134. https://doi.org/10.1016/j.ejpn.2008.02.012
Verhagen, E. A., Van Braeckel, K. N. J. A., van der Veere, C. N., Groen, H., Dijk, P. H., Hulzebos, C. V., & Bos, A. F. (2015). Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Developmental Medicine and Child Neurology, 57(5), 449-455. https://doi.org/10.1111/dmcn.12622
Verma, P. K., Panerai, R. B., Rennie, J. M., & Evans, D. H. (2000). Grading of cerebral autoregulation in preterm and term neonates. Pediatric Neurology, 23(3), 236-242. https://doi.org/10.1016/S0887-8994(00)00184-3
Vohr, B. R. (2014). Neurodevelopmental outcomes of extremely preterm infants. Clinics in Perinatology, 41(1), 241-255. https://doi.org/10.1016/j.clp.2013.09.003
校內:2028-01-31公開