簡易檢索 / 詳目顯示

研究生: 孫華鴻
Sun, Hua-Hong
論文名稱: 利用影像分析技術輔助植物繁化
Plant Propagation with the Aid of Image Analysis Techniques
指導教授: 胡敏君
Hu, Min-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 40
中文關鍵詞: 植物繁化曲率骨架
外文關鍵詞: Plant propagation, k-curvature, skeleton
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個以影像分析輔助自動化植物繁化過程的架構,在此架構中,首先要找出影像中側芽點(生長點)的位置和數量,進一步才能給出建議的分割線(下刀位置),交由自動化手臂針對建議的分割線進行切割植物。對於嬌貴的高經濟作物而言, 作物而言,此自動化繁化系統可減少人工切割植物之人力花費與時間成本,且自動化的環境可減少植物因溫度變化或暴露於一般空氣中過久而壞死的可能性。所開發的影像分析演算法分成三個階段:植物分割(包含前處理)、特徵擷取和側芽點位置偵測。在植物分割階段主要仰賴k-mean分群演算法,針對像素顏色和位置進行分群,並根據群大小與特徵判斷是否需進行合併,最後找出植物主體區域。而前處理除了填補分割不完全產生的洞,也另外加入平滑邊界的機制以達到更佳的分割結果。利用取得的植物輪廓,我們利用取得的植物輪廓,我們計算每個輪廓點的曲率以及整個物體的骨架,產生多個不同的特徵描述子。最後我們使用兩種方法:(1)基於條件判斷基於條件判斷的直覺方法,(2)基於支持向量機基於支持向量機 (SVM )的機器學習方法,去判斷側芽點出現的位置。根據實驗結果,支持向量機的精確率(precision)和回應率(recall)都明顯優於條件判斷的直覺方法。

    In this work, we propose an efficient plant propagation system with the aid of image analysis techniques. A lateral bud detection algorithm is designed and applied to determine the cutting line for plant propagation. We further develop an automatic control system to cut the plant based on the recommended cutting line, and the overall system aims at reducing labor cost and increasing the effectiveness of cutting the plants in the propagation process. Three steps including plant segmentation, feature extraction, and lateral bud positioning are designed to achieve fully automatic lateral bud detection. The plant segmentation step is based on K-means clustering, and we design a cluster merging mechanism and a smoothing process to obtain better segmentation results. Skeleton-based and curvature-based features are then extracted for the lateral bud positioning step. We investigate into two different approaches of lateral bud positioning, i.e. the heuristic thresholding approach and the SVM-based learning approach. The corresponding precision and recall rates show that the SVM-based approach performs better.

    摘要 I Abstract II Content III List of Tables V List of Figures VI 1. Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Challenges 3 1.4 Contributions 4 1.5 Thesis Organization 5 2. Related Work 6 2.1 Plant Segmentation 6 2.2 Feature Extraction and Plant Classification Methods 6 2.3 Plant Disease Analysis 8 2.4 Summary of Related Works 8 3. Proposed Method 9 3.1 Plant Segmentation based on K-means 9 3.2 Feature Extraction 12 3.2.1 Curvature-based Feature Extraction 12 3.2.2 Shape-based Feature Extraction 14 3.2.3 Color Feature 18 3.2.4 Thinning (Skelton) 18 3.3 Support vector machine (SVM) 21 3.4 Feature selection 22 3.5 SVM Kernel 23 4. Experrimental Result 25 4.1 Dataset Description 25 4.2 Environment Description 25 4.3 Experimental Results 25 4.4 Heuristic 26 4.4.1 Sum of Vector 26 4.4.2 Method 1 27 4.4.3 Method 2 27 4.5 Support vector machine (SVM) 28 4.5.1. Feature Selection 29 4.5.2. SVM Performance Comparison 29 4.6 Performance Comparison 31 5. Conclusions and Future Work 35 5.1 Conclusions 35 5.2 Discussion 35 5.3 Future Work 35 References 37

    Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, pp. 2037-2041.
    Al-Hiary, H., Bani-Ahmad, S., ALRahamneh, Z., Reyalat, M., & Braik, M. (2011). Fast and Accurate Detection and Classification of Plant Diseases. International Journal of Computer Applications, 17, pp. 31-38.
    Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. ACM-SIAM symposium on Discrete algorithms, pp. 1027-1035.
    Bashish, D. A., Braik, M., & Ahmad, S. B. (2011). Detection and Classification of Leaf Diseases using K-means-based Segmentation and Neural-networks-based Classification. Information Technology Journal, pp. 267-275.
    Bashish, D. A., Braik, M., & Bani-Ahmad, S. (2010). A framework for detection and classification of plant leaf and stem diseases. International Conference on Signal and Image Processing, pp. 113-118.
    Beghin, T., Cope, J. S., Paolo, R., & Sarah, B. (2010). Shape And Texture Based Plant Leaf Classification. Advanced Concepts for Intelligent Vision SystemsLecture Notes in Computer Science, 6475, pp. 345-353.
    Brochier, M. G., Vacavant, A., Cerutti, G., Kevin, B., & Laure, T. (2013). Comparative study of segmentation methods for tree leaves extraction. International Workshop on Video and Image Ground Truth in Computer Vision Applications, pp. 1-10.
    Camargoa, A., & Smith, J. (2009). An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystems Engineering, 102, pp. 9-21.
    Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the ACM, 32, pp. 359-373.
    Karunamoorthy, B., & Somasundereswari, D. (2013). A Defect Tea Leaf Identification Using Image Processing. Przegląd Elektrotechniczny, pp. 318-320.
    Kebapci, H., Yanikoglu, B., & Unal, G. (2011). Plant Image Retrieval Using Color, Shape and Texture Features. The Computer Journal, 54(9), pp. 1475-1490.
    Krishna, S., Indra, G., & Sangeeta, G. (2010). SVM-BDT PNN and Fourier Moment Technique for Classification. International Journal of Signal Processing, Image Processing and Pattern Recognition, pp. 67-78.
    Li, h. S., & Liu, H. (2012). Extraction of plant from complex background in colorful pictures. International Conference on Information Technology in Medicine and Education, pp. 401-404.
    Man, K. Q., Zheng, H. C., Wang, F. X., & Lin, Y. F. (20087). Recognition of Plant Leaves Using Support Vector Machine. International Conference on Intelligent Computing, 15, pp. 192-199.
    Mzoughi, O., Yahiaoui, I., & Boujemaa, N. (2012). Petiole shape detection for advanced leaf identification. IEEE International Conference on Image Processing, pp. 1033-1036.
    Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, pp. 971-987.
    Olivier, D., Ruckebusch, C., Durand, A., Duponchel, L., & Pierre, H. J. (2008). Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometrics and Intelligent Laboratory Systems, 96, pp. 27-33.
    Patil, Sanjay B., & Bodhe, Shrikant K. (2011). Leaf disease severity measurement using image processing. International Journal of Engineering & Technology, 3, pp. 297-301.
    Rumpfa, T., Mahleinb, U., Steinerb, C. E., Oerkeb, W. H., & Dehneb, P. L. (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74, pp. 91-99.
    Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, pp. 1-13.
    Smith, R. W. (1987). Computer processing of line images: a survey. Pattern Recognition, pp. 7-15.
    Sun, H. T., Lo, C. C., YU, S. P., & Tien, C. D. (2007). Boundary-based corner detection using K-cosine. IEEE International Conference on Systems, Man and Cybernetics, pp. 1106-1111.
    Valliammal, N., & Geethalakshmi, S. N. (2012). Plant Leaf Segmentation Using Non Linear K means Clustering. International Journal of Computer Science Issues (IJCSI), pp. 212-218.
    Wang, Z., Chi, Z., Feng, D., & Wang; , Q. (2000). Leaf Image Retrieval with Shape Features. International Conference on Advances in Visual Information Systems, pp. 477-487.
    Wang, Z., Lu, B., & Feng, D. (2011). Leaf Image Classification with Shape Context and SIFT Descriptors. Digital Image Computing Techniques and Applications, pp. 650-654.
    Yahiaoui, I., Herve, N., & Boujemaa, N. (2005). Shape-based image retrieval in botanical collections. Advances in Multimedia Information Processing (PCM), pp. 357-364.
    Z. W. Chen, Z. H. Zhang, Y., B. Wu, H. S. Chen, & W. P. Hu. (2010). Based on morphology and K-curvature methods for accomplishing entire lung segmentation. International Conference on Advanced Information Technologies.

    無法下載圖示 校內:2019-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE