簡易檢索 / 詳目顯示

研究生: 阮氏妙賢
Nguyen, Thi Dieu Hien
論文名稱: 電池材料之Li4Ti5012, V205, Li2S及P2S5的基本性質:第一原理計畫
Essential properties of Li4Ti5O12, V2O5, Li2S, and P2S5 battery materials: First-principles calculations
指導教授: 林明發
Lin, Ming-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 102
外文關鍵詞: Electronic properties, optical properties, excitonic effects, first-principles calculations, orbital hybridizations
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The quasiparticle theoretical framework mainly developed from first-principles calculations. The systematic study of emerging compounds, including Li4Ti5O12, V2O5, Li2S, and P2S5 are examined. Such condensed-matter systems, which present the diverse physical, chemical, and material phenomena, are illustrated by the significant multi-orbital hybridizations of chemical bonds. The critical mechanisms of quasiparticle properties in charges are identified from the optimal lattice symmetries, the atom-dominated valence and conduction bands, the spatial charge densities, the atom- and orbital-projected van Hove singularities, and the close relations between the energy-dependent orbital hybridizations and the optical absorption structures. The many-body excitonic effects which resulted from the electron-hole pair interactions are also covered within the developed framework. Potential practical applications, especially for energy storage and optical devices, are thoroughly investigated. Part of the predicted results is consistent with the high-resolution measurements, while most of them are worthy of the systematic examinations.

    TABLE OF CONTENTS ACKNOWLEDGMENTS I ABSTRACT II LIST OF FIGURES V LIST OF TABLES VIII Chapter 1 Introduction 1 Chapter 2 Featured properties of Li+-based battery anode: Li4Ti5O12 10 2.1 Introduction 10 2.2 Theoretical simulation methods 12 2.3 Rich geometric symmetries of 3D Li4Ti5O12 compound 13 2.4 Rich and unique electronic properties 16 2.5 Diverse absorption phenomena 25 Chapter 3 Electronic and excitation optical properties of vanadium pentoxide V2O5 32 3.1 Introduction 32 3.2 Computational methods 33 3.3 Rich geometric symmetries of V2O5 compound 35 3.4 Rich and unique electronic properties 38 3.5 Optical properties 45 3.6 Conclusion 53 Chapter 4 Rich quasiparticle properties of Li2S electrolyte in lithium sulfur battery 54 4.1 Introduction 54 4.2 3D crystal structure of lithium sulfur compounds 57 4.3 Electronic energy spectrum and atom dominances 59 4.4 Active orbital hybridization 62 4.5 In summary 68 Chapter 5 Diversified quasiparticle phenomena of mathbit{P}mathbf{2}mathbit{S}mathbf{5}: electrolyte in lithium sulfur battery 70 5.1 Introduction 70 5.1 Real- and wave-vector-space lattice symmetries 73 5.2 Atom-determined electronic energy spectrum and wave function 76 5.3 Significant multi-orbital hybridizations: charge density distribution and van Hove singularities 78 5.4 Conclusions and challenges 83 Chapter 6 Conclusion 85 References 91

    [1] Liu Y, Lian J, Sun Z, Zhao M, Shi Y and Song H 2017 The first-principles study for the novel optical properties of LiTi2O4, Li4Ti5O12, Li2Ti2O4 and Li7Ti5O12 Chem Phys Lett 677 114-9
    [2] Hafner J 2008 Ab-initio simulations of materials using VASP: Density-functional theory and beyond Journal of Computational Chemistry 29 2044-78
    [3] Lozhnikov V E, Mamonov A V, Borzilov V O, Mamonova M V, Prudnikov P V, Sorokin A A and Baksheev G G 2019 Estimating the Performance of Ab Initio Calculation by VASP on Openpower High Performance System. In: CEUR Workshop Proceedings, pp 24-9
    [4] Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu The Journal of chemical physics 132 154104
    [5] Fox M 2001 Optical Properties of Solids Oxford University Press)
    [6] Van Neck D, Verdonck S, Bonny G, Ayers P and Waroquier M 2006 Quasiparticle properties in a density-functional framework Phys Rev A 74 042501
    [7] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys Rev Lett 77 3865
    [8] Rangel T, Caliste D, Genovese L and Torrent M 2016 A wavelet-based projector augmented-wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set Computer Physics Communications 208 1-8
    [9] Blöchl P E 1994 Projector augmented-wave method Physical review B 50 17953
    [10] Manawi Y M, Samara A, Al-Ansari T and Atieh M A 2018 A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method Materials 11 822
    [11] Karthik K, Phuruangrat A, Chowdhury Z Z, Pradeeswari K and Kumar R M 2019 V2O5 nanoparticles as cathode for lithium-ion battery applications: Fabricated via microwave-assisted green synthesis using A. paniculata leaf extract
    [12] Gotić M, Popović S, Ivanda M and Musić S 2003 Sol–gel synthesis and characterization of V2O5 powders Materials Letters 57 3186-92
    [13] Le T K, Kang M, Han S W and Kim S W 2018 Highly intense room-temperature photoluminescence in V 2 O 5 nanospheres RSC advances 8 41317-22
    [14] Karthik K, Nikolova M P, Phuruangrat A, Pushpa S, Revathi V and Subbulakshmi M 2020 Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies Materials Research Innovations 24 229-34
    [15] Li J and Sun J L 2017 Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems Acc Chem Res 50 2737-45
    [16] Speakman S A 2013 Introduction to x-ray powder diffraction data analysis Center for Materials Science and Engineering at MIT
    [17] Kittel C 1996 Introduction to solid state physics, John Wiley & Sons New York 402
    [18] Bussolotti F, Chi D, Goh K J, Huang Y L and Wee A T 2020 2D Semiconductor Materials and Devices: Elsevier) pp 199-220
    [19] Reetz M T, Helbig W, Quaiser S A, Stimming U, Breuer N and Vogel R 1995 Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM Science 267 367-9
    [20] Damascelli A 2004 Probing the electronic structure of complex systems by ARPES Physica Scripta 2004 61
    [21] Fiermans L, Clauws P, Lambrecht W, Vandenbroucke L and Vennik J 1980 Single crystal V2O5 and lower oxides. A survey of their electronic, optical, structural, and surface properties physica status solidi (a) 59 485-504
    [22] Zhao M, Lian J, Jia Y, Jin K, Xu L, Hu Z, Yang X and Kang S 2016 Investigation of the optical properties of LiTi 2 O 4 and Li 4 Ti 5 O 12 spinel films by spectroscopic ellipsometry Optical Materials Express 6 3366-74
    [23] Nguyen T D H, Pham H D, Lin S-Y and Lin M-F 2020 Featured properties of Li+-based battery anode: Li 4 Ti 5 O 12 RSC Advances 10 14071-9
    [24] Khuong Dien V, Thi Han N, Nguyen T D H, Huynh T M D, Pham H D and Lin M-F 2020 Geometric and Electronic Properties of Li2GeO3 Frontiers in Materials 7
    [25] Jackson J D 1999 Classical electrodynamics. American Association of Physics Teachers)
    [26] Shevchuk V, Usatenko Y N, Demchenko P Y, Antonyak O and Serkiz R Y 2011 Nano-and micro-size V2O5 structures Chemistry of metals and alloys 67-71
    [27] Bullett D 1980 The energy band structure of V2O5: a simpler theoretical approach Journal of Physics C: Solid State Physics 13 L595
    [28] Li G, Chen Z and Lu J 2018 Lithium-sulfur batteries for commercial applications Chem 4 3-7
    [29] Pham H D, Nguyen T D H, Vo K D, Huynh T M D and Lin M-F 2020 Rich essential properties of boron, carbon, and nitrogen substituted germanenes Applied Physics Express 13 085502
    [30] Shih-Yang Lin H-Y L, Duy Khanh Nguyen, Ngoc Thanh Thuy Tran, Hai Duong Pham, Shen-Lin Chang, Chiun-Yan Lin, Ming-Fa Lin 2020 Silicene-Based Layered Materials: Essential Properties: IOP Publishing )
    [31] Tran N T T, Lin S-Y, Lin C-Y and Lin M-F 2017 Geometric and electronic properties of graphene-related systems: Chemical bonding schemes: CRC Press)
    [32] Foulkes W M C and Haydock R 1989 Tight-binding models and density-functional theory Physical review B 39 12520
    [33] Nakayama T and Shima H 1998 Computing the Kubo formula for large systems Physical Review E 58 3984
    [34] Ren X, Rinke P, Joas C and Scheffler M 2012 Random-phase approximation and its applications in computational chemistry and materials science Journal of Materials Science 47 7447-71
    [35] Nguyen T D H, Pham H D, Lin S Y and Lin M F 2020 Featured properties of Li+-based battery anode: Li4Ti5O12 Rsc Advances 10 14071-9
    [36] Zhang L, Sun D, Feng J, Cairns E J and Guo J 2017 Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy Nano letters 17 5084-91
    [37] Ozturk T, Ertas E and Mert O 2010 A Berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses Chem Rev 110 3419-78
    [38] Kudu Ö U, Famprikis T, Fleutot B, Braida M-D, Le Mercier T, Islam M S and Masquelier C 2018 A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S− P2S5 binary system Journal of Power Sources 407 31-43
    [39] Liang P, Zhang L, Wang D, Man X, Shu H, Wang L, Wan H, Du X and Wang H 2019 First-principles explorations of Li2S@ V2CTx hybrid structure as cathode material for lithium‑sulfur battery Applied Surface Science 489 677-83
    [40] Ertaş E, Öztürk T and Ösken I 2018 Purification of phosphorus decasulfide (P4S10). Google Patents)
    [41] Tahri Y, Chermette H and Hollinger G 1991 Electronic structures of phosphorus oxide P4O10 and phosphorus sulfides P4S10 and P4S7 Journal of electron spectroscopy and related phenomena 56 51-69
    [42] Lin S Y T, N. T. T.; Chang, S. L.; Su, W. P.; Lin, M. F. 2018 Structure- and Adatom-Enriched Essential Properties of Graphene Nanoribbons: CRC press )
    [43] Li M, Lu J, Chen Z and Amine K 2018 30 years of lithium‐ion batteries Advanced Materials 30 1800561
    [44] Pistoia G 2013 Lithium-ion batteries: advances and applications: Newnes)
    [45] Deng D 2015 Li‐ion batteries: basics, progress, and challenges Energy Science & Engineering 3 385-418
    [46] Nitta N, Wu F, Lee J T and Yushin G 2015 Li-ion battery materials: present and future Materials today 18 252-64
    [47] Ouyang D, Chen M, Liu J, Wei R, Weng J and Wang J 2018 Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions RSC advances 8 33414-24
    [48] Wang X, Sone Y, Segami G, Naito H, Yamada C and Kibe K 2006 Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements J Electrochem Soc 154 A14
    [49] Schweidler S, de Biasi L, Schiele A, Hartmann P, Brezesinski T and Janek J r 2018 Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study The Journal of Physical Chemistry C 122 8829-35
    [50] Wang Y, Zhang Y-x, Yang W-J, Jiang S, Hou X-w, Guo R, Liu W, Huang P, Lu J and Gu H-t 2018 Enhanced rate performance of Li4Ti5O12 anode for advanced lithium batteries J Electrochem Soc 166 A5014
    [51] Lu J, Nan C, Peng Q and Li Y 2012 Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery Journal of Power Sources 202 246-52
    [52] Liu Z, Zhang N and Sun K 2012 A novel grain restraint strategy to synthesize highly crystallized Li 4 Ti 5 O 12 (∼ 20 nm) for lithium ion batteries with superior high-rate performance Journal of Materials Chemistry 22 11688-93
    [53] Cheng C, Liu H, Li J, Xue X, Cao H, Wang D and Shi L 2015 Fabrication of spinel Li4− xTi5O12 via ion exchange for high-rate lithium-ion batteries Journal of Power Sources 283 237-42
    [54] Chiu H C, Lu X, Zhou J, Gu L, Reid J, Gauvin R, Zaghib K and Demopoulos G P 2017 Capacity fade mechanism of Li4Ti5O12 nanosheet anode Advanced Energy Materials 7 1601825
    [55] Lin W-B, Tran N T T and Lin S-Y 2019 Diverse fundamental properties in stage-n graphite alkali-intercalation compounds: anode materials of Li+-based batteries arXiv preprint arXiv:2001.02042
    [56] Li W-B, Lin S-Y, Tran N T T, Lin M-F and Lin K-I 2020 Essential geometric and electronic properties in stage-n graphite alkali-metal-intercalation compounds RSC Advances 10 23573-81
    [57] Ji K, Han J, Hirata A, Fujita T, Shen Y, Ning S, Liu P, Kashani H, Tian Y and Ito Y 2019 Lithium intercalation into bilayer graphene Nature communications 10 1-10
    [58] Tanaka Y, Ikeda M, Sumita M, Ohno T and Takada K 2016 First-principles analysis on role of spinel (111) phase boundaries in Li 4+ 3x Ti 5 O 12 Li-ion battery anodes Physical Chemistry Chemical Physics 18 23383-8
    [59] Tada K, Kitta M, Ozaki H and Tanaka S 2019 A comparative study of Na3LiTi5O12 and Li4Ti5O12: Geometric and electronic structures obtained by density functional theory calculations Chem Phys Lett 731 136598
    [60] Li M, Gould T, Su Z, Li S, Pan F and Zhang S 2019 Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum Appl Phys Lett 115 073902
    [61] Zahn S, Janek J and Mollenhauer D 2016 A simple ansatz to predict the structure of Li4Ti5O12 J Electrochem Soc 164 A221
    [62] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Controlling the electronic structure of bilayer graphene Science 313 951-4
    [63] Park H J, Meyer J, Roth S and Skákalová V 2010 Growth and properties of few-layer graphene prepared by chemical vapor deposition Carbon 48 1088-94
    [64] Nguyen D K, Tran N T T, Chiu Y-H and Lin M-F 2019 Concentration-diversified magnetic and electronic properties of halogen-adsorbed silicene Scientific reports 9 1-15
    [65] Sivek J, Sahin H, Partoens B and Peeters F M 2013 Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties Physical Review B 87 085444
    [66] Pham H D, Gumbs G, Su W-P, Tran N T T and Lin M-F 2020 Unusual features of nitrogen substitutions in silicene RSC Advances 10 32193-201
    [67] Bhatt M D and O'Dwyer C 2015 Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes Physical Chemistry Chemical Physics 17 4799-844
    [68] Zhang S S 2006 A review on electrolyte additives for lithium-ion batteries Journal of Power Sources 162 1379-94
    [69] Huang Y-K, Chen S-C, Ho Y-H, Lin C-Y and Lin M-F 2014 Feature-rich magnetic quantization in sliding bilayer graphenes Scientific reports 4 1-10
    [70] Gwon H, Hong J, Kim H, Seo D-H, Jeon S and Kang K 2014 Recent progress on flexible lithium rechargeable batteries Energy & Environmental Science 7 538-51
    [71] Zhou G, Li F and Cheng H-M 2014 Progress in flexible lithium batteries and future prospects Energy & Environmental Science 7 1307-38
    [72] Jona F, Strozier Jr J and Yang W 1982 Low-energy electron diffraction for surface structure analysis Rep Prog Phys 45 527
    [73] Kano S, Tada T and Majima Y 2015 Nanoparticle characterization based on STM and STS Chemical Society Reviews 44 970-87
    [74] Argaman N and Makov G 2000 Density functional theory: An introduction Am J Phys 68 69-79
    [75] Poulet G, Sautet P and Artacho E 2003 Comparison between plane-wave and linear-scaling localized basis sets for structural calculations of microporous molecular sieves Physical Review B 68 075118
    [76] Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Computational materials science 6 15-50
    [77] Lin S-Y, Chang S-L, Chen H-H, Su S-H, Huang J-C and Lin M-F 2016 Substrate-induced structures of bismuth adsorption on graphene: a first principles study Physical Chemistry Chemical Physics 18 18978-84
    [78] Ho Y-H, Wu J-Y, Chen R-B, Chiu Y-H and Lin M-F 2010 Optical transitions between Landau levels: AA-stacked bilayer graphene Appl Phys Lett 97 101905
    [79] Lee J-K, Lee S-C, Ahn J-P, Kim S-C, Wilson J I and John P 2008 The growth of AA graphite on (111) diamond The Journal of chemical physics 129 234709
    [80] Lu C, Chang C-P, Huang Y-C, Chen R-B and Lin M 2006 Influence of an electric field on the optical properties of few-layer graphene with AB stacking Physical Review B 73 144427
    [81] Yankowitz M, Joel I, Wang J, Birdwell A G, Chen Y-A, Watanabe K, Taniguchi T, Jacquod P, San-Jose P and Jarillo-Herrero P 2014 Electric field control of soliton motion and stacking in trilayer graphene Nature materials 13 786-9
    [82] Metois J and Le Lay G 1983 Complementary data obtained on the metal-semiconductor interface by LEED, AES and SEM: Pb/Ge (111) Surf Sci 133 422-42
    [83] Lauffer P, Emtsev K, Graupner R, Seyller T, Ley L, Reshanov S and Weber H 2008 Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy Physical Review B 77 155426
    [84] Chen C J 1993 Introduction to scanning tunneling microscopy vol 4: Oxford University Press on Demand)
    [85] Ceder G and Persson K 2010 The Materials Project: A Materials Genome Approach.
    [86] Özen S, Şenay V, Pat S and Korkmaz Ş 2016 Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries Journal of Physics D: Applied Physics 49 105303
    [87] Palczewski A D 2010 Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors. Ames Laboratory (AMES), Ames, IA (United States))
    [88] Koshino M and McCann E 2010 Parity and valley degeneracy in multilayer graphene Physical Review B 81 115315
    [89] Ryu Y K, Frisenda R and Castellanos-Gomez A 2019 Superlattices based on van der Waals 2D materials Chemical Communications 55 11498-510
    [90] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene RvMP 81 109-62
    [91] Coletti C, Forti S, Principi A, Emtsev K V, Zakharov A A, Daniels K M, Daas B K, Chandrashekhar M, Ouisse T and Chaussende D 2013 Revealing the electronic band structure of trilayer graphene on SiC: An angle-resolved photoemission study Physical Review B 88 155439
    [92] Hattendorf S, Georgi A, Liebmann M and Morgenstern M 2013 Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy Surf Sci 610 53-8
    [93] Zólyomi V, Wallbank J and Fal'Ko V 2014 Silicane and germanane: tight-binding and first-principles studies 2D Materials 1 011005
    [94] Hipps K 2006 Handbook of Applied Solid State Spectroscopy: Springer) pp 305-50
    [95] Deshpande A, Bao W, Miao F, Lau C N and LeRoy B J 2009 Spatially resolved spectroscopy of monolayer graphene on SiO 2 Physical Review B 79 205411
    [96] Lu C, Chang C-P, Huang Y-C, Lu J, Hwang C-C and Lin M-F 2006 Low-energy electronic properties of the AB-stacked few-layer graphites Journal of Physics: Condensed Matter 18 5849
    [97] Gao L 2014 Probing electronic properties of graphene on the atomic scale by scanning tunneling microscopy and spectroscopy Graphene and 2D Materials 1
    [98] Pierucci D, Sediri H, Hajlaoui M, Girard J-C, Brumme T, Calandra M, Velez-Fort E, Patriarche G, Silly M G and Ferro G 2015 Evidence for flat bands near the Fermi level in epitaxial rhombohedral multilayer graphene ACS nano 9 5432-9
    [99] Mak K F, Shan J and Heinz T F 2010 Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence Phys Rev Lett 104 176404
    [100] Lu J, Chen Z, Pan F, Cui Y and Amine K 2018 High-performance anode materials for rechargeable lithium-ion batteries Electrochemical Energy Reviews 1 35-53
    [101] Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria R P and Capiglia C 2014 Review on recent progress of nanostructured anode materials for Li-ion batteries Journal of power sources 257 421-43
    [102] Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H and Goodenough J B 2011 Development and challenges of LiFePO 4 cathode material for lithium-ion batteries Energy & Environmental Science 4 269-84
    [103] Yang L, Li Q, Wang Y, Chen Y, Guo X, Wu Z, Chen G, Zhong B, Xiang W and Zhong Y 2020 A review of cathode materials in lithium-sulfur batteries Ionics 1-20
    [104] Balbuena P B and Wang Y 2004 Lithium-ion batteries: solid-electrolyte interphase: Imperial college press)
    [105] Kanno R 2001 Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery. Google Patents)
    [106] Grundmann M 2010 The Physics of Semiconductors: Springer) pp 775-6
    [107] Jackson J D 2007 Classical electrodynamics: John Wiley & Sons)
    [108] Fox M 2002 Optical properties of solids. American Association of Physics Teachers)
    [109] VanHove M A, Weinberg W H and Chan C-M 2012 Low-energy electron diffraction: experiment, theory and surface structure determination vol 6: Springer Science & Business Media)
    [110] Flegler S L and Flegler S L 1997 Scanning & Transmission Electron Microscopy: Oxford University Press)
    [111] Lv B, Qian T and Ding H 2019 Angle-resolved photoemission spectroscopy and its application to topological materials Nature Reviews Physics 1 609-26
    [112] Barron A and Ye R 2011 Photoluminescence Spectroscopy and its Applications
    [113] Shenhui J, Ding D and Quanxing J 2003 Measurement of electromagnetic properties of materials using transmission/reflection method in coaxial line. In: Asia-Pacific Conference on Environmental Electromagnetics, 2003. CEEM 2003. Proceedings.: IEEE) pp 590-5
    [114] Liao K-m, Wu Y-q, Qian C and Du G-p 2011 Electrical Power Systems and Computers: Springer) pp 779-84
    [115] Ghodgaonkar D, Varadan V and Varadan V 1990 Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies IEEE Trans Instrum Meas 39 387-94
    [116] Dressel M, Klein O, Donovan S and Grüner G 1996 High frequency resonant techniques for studying the complex electrodynamic response in solids Ferroelectrics 176 285-308
    [117] Blomgren G E 2016 The development and future of lithium ion batteries J Electrochem Soc 164 A5019
    [118] Yamada Y, Wang J, Ko S, Watanabe E and Yamada A 2019 Advances and issues in developing salt-concentrated battery electrolytes Nature Energy 4 269-80
    [119] Wan N H, Meng F, Schröder T, Shiue R-J, Chen E H and Englund D 2015 High-resolution optical spectroscopy using multimode interference in a compact tapered fibre Nature communications 6 1-6
    [120] Aslam M, Ismail I M, Salah N, Chandrasekaran S, Qamar M T and Hameed A 2015 Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols Journal of hazardous materials 286 127-35
    [121] Sajid M M, Shad N A, Javed Y, Khan S B, Zhang Z, Amin N and Zhai H 2020 Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes Surfaces and Interfaces 100502
    [122] Ozen S, Senay V, Pat S and Korkmaz S 2016 Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries Journal of Physics D-Applied Physics 49
    [123] Andronenko R and Nakusov A 2007 Sensory properties of vanadium pentoxide films in gaseous media Glass Physics and Chemistry 33 411-6
    [124] Gu G, Schmid M, Chiu P-W, Minett A, Fraysse J, Kim G-T, Roth S, Kozlov M, Muñoz E and Baughman R H 2003 V 2 O 5 nanofibre sheet actuators Nature materials 2 316-9
    [125] Dhawan A, Sharma Y, Brickson L and Muth J F 2014 Incorporation of vanadium oxide films in optical fibers for temperature sensing and optical switching applications Optical Materials Express 4 1128-39
    [126] Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J and Amine K 2015 Binder-free V2O5 cathode for greener rechargeable aluminum battery ACS Applied materials & interfaces 7 80-4
    [127] Saroja A, Samantaray S S and Sundara R 2019 A room temperature multivalent rechargeable iron ion battery with an ether based electrolyte: a new type of post-lithium ion battery Chemical Communications 55 10416-9
    [128] Sakai Y and Ehara S 1999 Surface Structure and Electronic States of V2O5 Surface Studied by Scanning Tunneling Microscopy/Spectroscopy Jpn J Appl Phys 38 2944
    [129] Pan A, Wu H B, Yu L and Lou X W 2013 Template‐free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium‐ion batteries Angewandte Chemie 125 2282-6
    [130] Li Q, Chen D, Tan H, Zhang X, Rui X and Yu Y 2020 3D porous V2O5 architectures for high-rate lithium storage Journal of Energy Chemistry 40 15-21
    [131] Greenwood N N and Earnshaw A 2012 Chemistry of the Elements: Elsevier)
    [132] Londero E and Schröder E 2010 Role of van der Waals bonding in the layered oxide V 2 O 5: First-principles density-functional calculations Physical Review B 82 054116
    [133] Jovanović A, Dobrota A, Rafailović L, Mentus S, Pašti I, Johansson B and Skorodumova N V 2018 Structural and electronic properties of V 2 O 5 and their tuning by doping with 3d elements–modelling using the DFT+ U method and dispersion correction Physical Chemistry Chemical Physics 20 13934-43
    [134] Das T, Tosoni S and Pacchioni G 2019 Structural and electronic properties of bulk and ultrathin layers of V2O5 and MoO3 Computational Materials Science 163 230-40
    [135] Albareda G, Suñé J and Oriols X 2009 Many-particle hamiltonian for open systems with full coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices Physical Review B 79 075315
    [136] Grimme S, Antony J, Ehrlich S and Krieg H 2010 DFT-D3—a dispersion correction for density functionals, Hartree–Fock and semi-empirical quantum chemical methods DFT-D3 The Journal of Chemical Physics 132 154104
    [137] Grimme S, Ehrlich S and Goerigk L 2011 Effect of the damping function in dispersion corrected density functional theory Journal of computational chemistry 32 1456-65
    [138] Wang L, Maxisch T and Ceder G 2006 Oxidation energies of transition metal oxides within the GGA+ U framework Physical Review B 73 195107
    [139] Lutfalla S, Shapovalov V and Bell A T 2011 Calibration of the DFT/GGA+ U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce Journal of chemical theory and computation 7 2218-23
    [140] Tran N T T L, S. Y.; Lin, C. Y.; Lin, M. F. 2017 Geometric and electronic properties of graphene-related systems: Chemical bonding Schemes: CRC Press )
    [141] Chiun-Yan Lin J-Y W, Chih-Wei Chiu, and Ming-Fa Lin 2019 Coulomb excitations and decays in graphene-related
    systems: CRC Press)
    [142] Shklover V, Haibach T, Ried F, Nesper R and Novak P 1996 Crystal Structure of the Product of Mg2+ Insertion into V2O5Single Crystals Journal of solid state chemistry 123 317-23
    [143] Szymanski N, Liu Z, Alderson T, Podraza N, Sarin P and Khare S 2018 Electronic and optical properties of vanadium oxides from first principles Computational Materials Science 146 310-8
    [144] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D and Ceder G 2013 Commentary: The Materials Project: A materials genome approach to accelerating materials innovation Apl Materials 1 011002
    [145] Li Y, Kuang J-L, Lu Y and Cao W-B 2017 Facile synthesis, characterization of flower-like vanadium pentoxide powders and their photocatalytic behavior Acta Metallurgica Sinica (English Letters) 30 1017-26
    [146] Tepper B, Richter B, Dupuis A-C, Kuhlenbeck H, Hucho C, Schilbe P, Bin Yarmo M and Freund H-J 2002 Adsorption of molecular and atomic hydrogen on vacuum-cleaved V2O5 (001) Surf Sci 496 64-72
    [147] Ellison W J and Moreau J-M 2008 Open-ended coaxial probe: Model limitations IEEE Trans Instrum Meas 57 1984-91
    [148] Wee F H, Soh P J, Suhaizal A, Nornikman H and Ezanuddin A 2009 Free space measurement technique on dielectric properties of agricultural residues at microwave frequencies. In: 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC): IEEE) pp 183-7
    [149] Baker-Jarvis J, Janezic M D and DeGroot D C 2010 High-frequency dielectric measurements IEEE Instrumentation & Measurement Magazine 13 24-31
    [150] Shevchuk V, Luchechko A, Usatenko Y N, Kayun I and Sugak D Y 2012 Optical properties of V 2 O 5 crystals. In: 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE): IEEE) pp 223-4
    [151] Aotani N, Iwamoto K, Takada K and Kondo S 1994 Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4Li2SSiS2 Solid State Ionics 68 35-9
    [152] Hayamizu K and Aihara Y 2013 Lithium ion diffusion in solid electrolyte (Li2S) 7 (P2S5) 3 measured by pulsed-gradient spin-echo 7Li NMR spectroscopy Solid State Ionics 238 7-14
    [153] Eithiraj R, Jaiganesh G, Kalpana G and Rajagopalan M 2007 First‐principles study of electronic structure and ground‐state properties of alkali‐metal sulfides–Li2S, Na2S, K2S and Rb2S physica status solidi (b) 244 1337-46
    [154] Yi Z, Su F, Huo L, Cui G, Zhang C, Han P, Dong N and Chen C 2020 New insights into Li2S2/Li2S adsorption on the graphene bearing single vacancy: A DFT study Applied Surface Science 503 144446
    [155] Manthiram A, Fu Y, Chung S-H, Zu C and Su Y-S 2014 Rechargeable lithium–sulfur batteries Chem Rev 114 11751-87
    [156] Ding B, Wang J, Fan Z, Chen S, Lin Q, Lu X, Dou H, Nanjundan A K, Gleb Y and Zhang X 2020 Solid-state lithium–sulfur batteries: Advances, challenges and perspectives Materials Today
    [157] Anastas P T and Zimmerman J B 2019 The periodic table of the elements of green and sustainable chemistry Green Chemistry 21 6545-66
    [158] Xie Y, Ma Y M, Cui T, Li Y, Qiu J and Zou G 2008 Origin of bcc to fcc phase transition under pressure in alkali metals New Journal of Physics 10 063022
    [159] Lang P F and Smith B C 2015 Metallic Structure and Bonding World 3 30-5
    [160] Lamoureux G and Ogilvie J F 2019 Hybrid Atomic Orbitals in Organic Chemistry. Part 2: Critique of Practical Aspects Química Nova 42 817-22
    [161] Geist E, Kirschning A and Schmidt T 2014 sp 3-sp 3 Coupling reactions in the synthesis of natural products and biologically active molecules Natural product reports 31 441-8
    [162] Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M and Cheng B 2016 A review of recent developments in rechargeable lithium–sulfur batteries Nanoscale 8 16541-88
    [163] Ould Ely T, Kamzabek D, Chakraborty D and Doherty M F 2018 Lithium–sulfur batteries: state of the art and future directions ACS Applied Energy Materials 1 1783-814
    [164] Luo G, Zhao J and Wang B 2012 First-principles study of transition metal doped Li2S as cathode materials in lithium batteries Journal of Renewable and Sustainable Energy 4 063128
    [165] Camacho-Forero L E and Balbuena P B 2018 Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface Journal of Power Sources 396 782-90
    [166] Rao C, Vivekchand S, Biswas K and Govindaraj A 2007 Synthesis of inorganic nanomaterials Dalton Transactions 3728-49
    [167] Suslick K S 2001 Encyclopedia of physical science and technology Sonoluminescence and sonochemistry, 3rd edn. Elsevier Science Ltd, Massachusetts 1-20
    [168] Zhang C, Li Y, Pei D, Liu Z and Chen Y 2020 Angle-Resolved Photoemission Spectroscopy Study of Topological Quantum Materials Annual Review of Materials Research 50
    [169] Liu Z, Deng H, Hu W, Gao F, Zhang S, Balbuena P B and Mukherjee P P 2018 Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries Physical Chemistry Chemical Physics 20 11713-21
    [170] Liu Z, Hubble D, Balbuena P B and Mukherjee P P 2015 Adsorption of insoluble polysulfides Li 2 S x (x= 1, 2) on Li 2 S surfaces Physical Chemistry Chemical Physics 17 9032-9
    [171] Chen Y-X and Kaghazchi P 2014 Metalization of Li 2 S particle surfaces in Li–S batteries Nanoscale 6 13391-5
    [172] Feenstra R M 1994 Scanning tunneling spectroscopy Surf Sci 299 965-79
    [173] Ouyang X, Lei M, Shi S, Luo C, Liu D, Jiang D, Ye Z and Lei M 2009 First-principles studies on surface electronic structure and stability of LiFePO4 Journal of alloys and compounds 476 462-5
    [174] Xu J and Chen G 2010 Effects of doping on the electronic properties of LiFePO4: A first-principles investigation Physica B: Condensed Matter 405 803-7
    [175] Yamada A, Chung S and Hinokuma K Optimized LiFePO [sub 4] for Lithium Battery Cathodes J. Electrochem. Soc 148 A224
    [176] Boufelfel A 2013 Electronic structure and magnetism in the layered LiFeO2: DFT+ U calculations Journal of magnetism and magnetic materials 343 92-8
    [177] Li J, Li J, Luo J, Wang L and He X 2011 Recent advances in the LiFeO2-based materials for Li-ion batteries International Journal of Electrochemical Science 6 1550-61
    [178] Nagpure S C, Babu S, Bhushan B, Kumar A, Mishra R, Windl W, Kovarik L and Mills M 2011 Local electronic structure of LiFePO4 nanoparticles in aged Li-ion batteries Acta materialia 59 6917-26
    [179] Ho J-H, Lu C, Hwang C, Chang C and Lin M-F 2006 Coulomb excitations in AA-and AB-stacked bilayer graphites Physical Review B 74 085406
    [180] Chen X, Tian F, Persson C, Duan W and Chen N-x 2013 Interlayer interactions in graphites Scientific reports 3 1-5
    [181] Scrosati B, Hassoun J and Sun Y-K 2011 Lithium-ion batteries. A look into the future Energy & Environmental Science 4 3287-95
    [182] Mahan G D 2013 Many-particle physics: Springer Science & Business Media)
    [183] Dien V K, Pham H D, Tran N T T, Han N T, Huynh T M D, Nguyen T D H and Fa-Lin M 2020 Orbital-hybridization-created optical excitations in Li8Ge4O12 arXiv preprint arXiv:2009.02160
    [184] Dai H 2002 Carbon nanotubes: synthesis, integration, and properties Acc Chem Res 35 1035-44
    [185] Du A J, Chen Y, Lu G and Smith S C 2008 Half metallicty in finite-length zigzag single walled carbon nanotube: A first-principle prediction Appl Phys Lett 93 073101
    [186] Yin W-J, Xie Y-E, Liu L-M, Chen Y-P, Wang R-Z, Wei X-L, Zhong J-X and Lau L 2013 Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study J Appl Phys 113 173506
    [187] Yang L, Cohen M L and Louie S G 2007 Excitonic effects in the optical spectra of graphene nanoribbons Nano letters 7 3112-5
    [188] Tran N T T, Lin S-Y, Glukhova O E and Lin M-F 2016 π-Bonding-dominated energy gaps in graphene oxide RSC advances 6 24458-63
    [189] Lin C-Y, Ho C-H, Wu J-Y, Do T-N, Shih P-H, Lin S-Y and Lin M-F 2019 Diverse quantization phenomena in layered materials: CRC Press)
    [190] Mizuno F, Hayashi A, Tadanaga K and Tatsumisago M 2006 High lithium ion conducting glass-ceramics in the system Li2S–P2S5 Solid State Ionics 177 2721-5
    [191] Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 Anomalous high ionic conductivity of nanoporous β-Li3PS4 J Am Chem Soc 135 975-8
    [192] Phuc N H H, Totani M, Morikawa K, Muto H and Matsuda A 2016 Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium Solid State Ionics 288 240-3
    [193] Seino Y, Nakagawa M, Senga M, Higuchi H, Takada K and Sasaki T 2015 Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic Journal of Materials Chemistry A 3 2756-61
    [194] Aoki Y, Ogawa K, Nakagawa T, Hasegawa Y, Sakiyama Y, Kojima T and Tabuchi M 2017 Chemical and structural changes of 70Li2S-30P2S5 solid electrolyte during heat treatment Solid State Ionics 310 50-5
    [195] Busche M R, Weber D A, Schneider Y, Dietrich C, Wenzel S, Leichtweiss T, Schröder D, Zhang W, Weigand H and Walter D 2016 In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup Chemistry of Materials 28 6152-65
    [196] Chu W, Calise F, Duić N, Østergaard P A, Vicidomini M and Wang Q 2020 Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems Energies 13 5229
    [197] Von Schnering H G and Hönle W 1988 Chemistry and structural chemistry of phosphides and polyphosphides. 48. Bridging chasms with polyphosphides Chem Rev 88 243-73
    [198] Nizamov I y S, Al'metkina L A, Garifzyanova G G, Sergeenko G n G and Batyeva E S 1995 REACTIONS OF PHOSPHORUS SULFIDES (P4S5, P4S7 AND P4S10) AND 2, 4-BIS (ALKYLTHIO)-2, 4-DITHIOXO-1, 3, 2λ5, 4λ5-DITHIADIPHOSPHETANES WITH DIALKYLDISULFIDES AND THIOACETALS IN THE PRESENCE OF IODINE Phosphorus, Sulfur, and Silicon and the Related Elements 102 71-81
    [199] Jason M E 1997 Transfer of Sulfur from Arsenic and Antimony Sulfides to Phosphorus Sulfides. Rational Syntheses of Several Less-Common P4S n Species lnorg Chem 36 2641-6
    [200] Cantarero A 2015 Raman scattering applied to materials science Procedia Materials Science 9 113-22
    [201] Chen S, Wu J, Lin C and Lin M 2016 Theory of magnetoelectric properties of 2d systems New J. Phys 18 103024
    [202] Mu A, Cyvin B, Cyvin S, Pohl S and Krebs B 1976 Spectroscopic studies of As4O6, Sb4O6, P4S10, Ge4S104− and organometallic compounds containing the M4X6 cage. The Raman and ir spectrum of Ge4S104− Spectrochimica Acta Part A: Molecular Spectroscopy 32 67-74
    [203] Auffray N, Le Quang H and He Q-C 2013 Matrix representations for 3D strain-gradient elasticity J Mech Phys Solids 61 1202-23
    [204] Li M, Liu X, Li Q, Jin Z, Wang W, Wang A, Huang Y and Yang Y 2020 P4S10 modified lithium anode for enhanced performance of lithium–sulfur batteries Journal of Energy Chemistry 41 27-33
    [205] Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J and Rüther T 2014 Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy & environmental science 7 3902-20
    [206] Lepley N, Holzwarth N and Du Y A 2013 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles Physical Review B 88 104103
    [207] Yang H, Naveed A, Li Q, Guo C, Chen J, Lei J, Yang J, Nuli Y and Wang J 2018 Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode Energy Storage Materials 15 299-307
    [208] Choi J-W, Cheruvally G, Kim D-S, Ahn J-H, Kim K-W and Ahn H-J 2008 Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive Journal of Power Sources 183 441-5
    [209] Li X, Liang J, Lu Y, Hou Z, Cheng Q, Zhu Y and Qian Y 2017 Sulfur‐Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries Angewandte Chemie International Edition 56 2937-41
    [210] Lin M-F and Shung K W-K 1994 Plasmons and optical properties of carbon nanotubes Physical Review B 50 17744
    [211] Sanchís J, Milačič R, Zuliani T, Vidmar J, Abad E, Farré M and Barceló D 2018 Occurrence of C60 and related fullerenes in the Sava River under different hydrologic conditions Science of the total environment 643 1108-16
    [212] Lai Y, Ho J, Chang C and Lin M-F 2008 Magnetoelectronic properties of bilayer Bernal graphene Physical Review B 77 085426
    [213] Chen S, Chen P and Wang Y 2011 Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries Nanoscale 3 4323-9
    [214] Tomita S, Sakurai T, Ohta H, Fujii M and Hayashi S 2001 Structure and electronic properties of carbon onions The Journal of Chemical Physics 114 7477-82
    [215] Tran N T T, Nguyen D K, Glukhova O E and Lin M-F 2017 Coverage-dependent essential properties of halogenated graphene: A DFT study Scientific reports 7 1-13
    [216] Lv R, Li Q, Botello-Méndez A R, Hayashi T, Wang B, Berkdemir A, Hao Q, Elías A L, Cruz-Silva R and Gutiérrez H R 2012 Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing Scientific reports 2 586
    [217] Huang H-C, Lin S-Y, Wu C-L and Lin M-F 2016 Configuration-and concentration-dependent electronic properties of hydrogenated graphene Carbon 103 84-93
    [218] Tarascon J-M and Armand M 2011 Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific) pp 171-9
    [219] Buyukyazi M and Mathur S 2015 3D nanoarchitectures of a-LiFeO2 and alpha-LiFeO2/C nanofibers for high power lithium-ion batteries Nano Energy 13 28-35
    [220] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 The electronic structure and band gap of LiFePO4 and LiMnPO4 Solid State Commun 132 181-6
    [221] Baltes H, Yacoby Y, Pindak R, Clarke R, Pfeiffer L and Berman L 1997 Measurement of the x-ray diffraction phase in a 2D crystal Phys Rev Lett 79 1285-8
    [222] Olsen T and Thygesen K S 2013 Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding Physical Review B 87 075111
    [223] Nguyen-Truong H T 2014 Energy-loss function including damping and prediction of plasmon lifetime Journal of Electron Spectroscopy and Related Phenomena 193 79-85
    [224] Sun Y, Xu H, Da B, Mao S-f and Ding Z-j 2016 Calculations of energy-loss function for 26 materials Chinese Journal of Chemical Physics 29 663-70
    [225] Augustsson A, Herstedt M, Guo J-H, Edström K, Zhuang G, Ross Jr P, Rubensson J-E and Nordgren J 2004 Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy Physical Chemistry Chemical Physics 6 4185-9
    [226] Li Y, Lu Y, Adelhelm P, Titirici M-M and Hu Y-S 2019 Intercalation chemistry of graphite: alkali metal ions and beyond Chemical Society Reviews 48 4655-87
    [227] Tanaka S, Kitta M, Tamura T, Maeda Y, Akita T and Kohyama M 2014 Atomic and electronic structures of Li 4 Ti 5 O 12/Li 7 Ti 5 O 12 (001) interfaces by first-principles calculations Journal of Materials Science 49 4032-7
    [228] Rahman M M, Sultana I, Yang T, Chen Z, Sharma N, Glushenkov A M and Chen Y 2016 Lithium germanate (Li2GeO3): a high‐performance anode material for lithium‐ion batteries Angewandte Chemie 128 16293-7
    [229] NARENDHRAN S and VINOTH V 2019 BIOSYNTHESIS AND CHARACTERIZATION OF Cassia Fistula MEDIATED LITHIUM COATED IRON OXIDE NANOPARTICLE (LiFe2O3) AND EVALUATION OF ITS ANTIBACTERIAL ACTIVITY. In: National Conference, p 33
    [230] Qi D 2014 From Graphite to Graphene via Scanning Tunneling Microscopy
    [231] Sun H-L, Shen Q-T, Jia J-F, Zhang Q-Z and Xue Q-K 2003 Scanning tunneling microscopy study of superlattice domain boundaries on graphite surface Surf Sci 542 94-100
    [232] Stöberl U, Wurstbauer U, Wegscheider W, Weiss D and Eroms J 2008 Morphology and flexibility of graphene and few-layer graphene on various substrates Appl Phys Lett 93 051906
    [233] Mahatha S, Menon K S and Balasubramanian T 2011 Unoccupied electronic structure of graphite probed by angle-resolved photoemission spectroscopy Physical Review B 84 113106
    [234] Gunasekara N, Takahashi T, Maeda F, Sagawa T and Suematsu H 1988 Angle-resolved ultraviolet photoemission study of first stage alkali-metal graphite intercalation compounds Zeitschrift für Physik B Condensed Matter 70 349-55
    [235] Matthes L, Pulci O and Bechstedt F 2014 Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles New Journal of Physics 16
    [236] Trukhin A N, Rogulis U and Spingis M 1997 Self-trapped exciton in Li2GeO3 J Lumin 72 890-2
    [237] Trukhin A 1997 Self-Trapped Excitons in SiO2, GeO2, Li2GeO3, AIPO4 and GaPO4. In: Materials Science Forum: Trans Tech Publ) pp 531-6
    [238] Scrosati W A v S B 2002 Advances in lithium-ion batteries: Springer Science & Business Media)
    [239] Feng C, Li L, Guo Z, Shi D, Zeng R and Zhu X 2009 Synthesis and properties of Li–Ti–O spinel (LiTi2O4) Journal of alloys and compounds 478 767-70
    [240] Liu Y, Lian J, Yang X, Zhao M, Shi Y, Song H and Dai K 2017 First-principles calculation for point defects in Li2Ti2O4 Materials Research Express 4 106502
    [241] Kordyuk A 2014 ARPES experiment in fermiology of quasi-2D metals Low Temperature Physics 40 286-96

    無法下載圖示 校內:2026-08-05公開
    校外:2026-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE