簡易檢索 / 詳目顯示

研究生: 李馥安
Li, Fu-An
論文名稱: 奈米氧化鐵礦物之合成與基礎特性研究
Synthesis and characterization of iron oxide nano-minerals
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 133
中文關鍵詞: 磁鐵礦磁赤鐵礦赤鐵礦鈦鐵礦針鐵礦吸附光催化
外文關鍵詞: magnetite, maghemite, hematite, ilmenite, goethite, adsorption, photocatalysis
相關次數: 點閱:86下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題是利用共沉澱法及溶膠凝膠法合成奈米氧化鐵礦物系列(奈米赤鐵礦、奈米鈦鐵礦、奈米磁鐵礦、奈米針鐵礦、奈米磁赤鐵礦),藉由調變不同的合成參數去合成出三種不同粒徑的奈米氧化鐵礦物,並比較不同粒徑對銅離子吸附的影響及探討其光催化降解污染物之效益。從XRD圖譜中可知:我們成功地合成出不同粒徑的奈米氧化鐵礦物,但奈米鈦鐵礦卻含有Fe2TiO5的雜相;由TEM影像上,我們可以觀察到不同粒徑奈米氧化鐵的表面形貌及粒子分布情況;BET結果顯示:隨粒徑變小,奈米氧化鐵礦物其比表面積變大;從SQUID分析可以得知,粒徑大小將影響到其矯頑磁場及殘留磁化量/飽和磁化量比例。從UV-Vis量測可知︰奈米氧化鐵礦物都屬於可見光能隙範疇。在銅離子吸附結果中可知:溶液pH值越高,越有利於吸附,且比表面積值也會影響到其最大吸附量;銅離子吸附為假二階吸附模式且符合Langmuir之等溫吸附模式。紫外光光催化結果顯示:高比表面積值及對紫外光有高吸收度會有比較好的光催化效率;可見光光催化結果顯示:高比表面積值及對可見光有高吸收度亦會有比較好的光催化效率。綜合以上結果可顯示:我們所製備的奈米氧化鐵礦物系列兼具光催化與銅離子吸附之功能,故可應用於環境汙染處理上。

    關鍵詞:磁鐵礦、磁赤鐵礦、赤鐵礦、鈦鐵礦、針鐵礦、吸附、光催化

    In this study, the iron oxide nano-minerials ( magnetite、maghemite、hematite、ilmenite and goethite)are synthesized using a sol-gel and co-precipitation method. We want to synthesize different particle sizes of iron oxide nano-minerials to investigate the effect of particle size on the photocatalytic activity and heavy metal adsorption.
    From the XRD pattern, it is observed that we can successfully synthesize different particle sizes of nano-minerals, and they have a pure crystalline phase except nano-ilmenite. TEM images also show the particle sizes of all the nano-minerals are in the nano-scale, and they are a little aggregated except nano-hematite. The BET results exhibit a higher specific surface area with a smaller particle size of nano-minerals. The SQUID result shows the coercivity field, and the ratio of remnants of magnetic moment and saturated magnetic moment would be affected by the particle size. It is also found that the band gap of nano-minerals belongs to the range of visible light.
    It is observed that the Cu2+ adsorption seems favorable for a higher pH condition, and the surface area is the key factor to influence the adsorption activity. Furthermore, the Cu2+ adsorption behavior of all the nano-minerals are well fitted to the pseudo-second order equation and it belongs to Langmuir isotherm. The photocatalytic activity under UV-light irradiation suggests that a higher surface area and higher absorbance of nano-minerals would own a higher photocatalytic efficiency. The photodegradation under Vis-light irradiation is dependent on the factors of surface area and absorbance of vis-light. Therefore, these findings indicate that iron oxide nano-minerials are effective materials for Cu2+ removal and, together with its photocatalytic activity, may be applied in the environmental treatment.

    Keywords: magnetite、maghemite、hematite、ilmenite、goethite、adsorption、photocatalysis.

    中文摘要......................................I 英文摘要....................................III 誌謝..........................................V 目錄.........................................VI 圖目錄.....................................VIII 表目錄.......................................XI 第一章 緒論..................................1 第二章 研究背景..............................3 2.1 研究材料簡介..............................3 2.1.1磁鐵礦...................................3 2.1.2磁赤鐵礦.................................4 2.1.3赤鐵礦...................................4 2.1.4針鐵礦...................................5 2.1.5鈦鐵礦...................................6 2.1.6銅.......................................7 2.2 理論基礎..................................8 2.2.1 吸附理論...............................11 2.2.2 光催化理論.............................17 2.3 前人研究.................................20 2.3.1鐵氧化物的合成..........................20 2.3.2鐵氧化物的表面化學特性..................23 2.3.3鐵氧化物的應用..........................26 第三章 研究方法.............................29 3.1實驗流程..................................29 3.1.1實驗材料................................31 3.1.2實驗儀器................................32 3.2 合成方法.................................32 3.3 礦物特性分析.............................39 3.3.1 X光粉末繞射儀.....................39 3.3.2 穿透式電子顯微鏡...................39 3.3.3 比表面積分析儀.....................40 3.3.4 掃描試電子顯微鏡...................41 3.3.5 超導量子干涉儀.....................41 3.3.6 紫外光/可見光光譜分析儀............42 3.3.7 X光光電子能譜儀...................43 3.3.8 等離子體發射光譜儀.................44 3.4 銅離子吸附實驗...........................45 3.5 光催化實驗...............................46 3.5.1紫外光光催化實驗....................47 3.5.2可見光光催化實驗....................48 第四章 研究成果與討論.......................50 4.1 礦物特性分析.........................50 4.1.1 X光粉末繞射儀..................50 4.1.2穿透式電子顯微鏡........................53 4.1.3超導量子干涉儀..................60 4.1.4紫外光/可見光光譜分析儀.........66 4.1.5比表面積分析儀..................71 4.1.6掃描式電子顯微鏡................72 4.1.7 X光光電子能譜儀................76 4.2銅離子吸附結果........................79 4.3光催化結果............................94 4.3.1紫外光光催化結果................94 4.3.2可見光光催化結果...............107 第五章 結論.................................122 5.1銅離子吸附結果.......................123 5.2光催化結果...........................123 參考文獻....................................125

    A. Bee, R. Massart, S. Neveu, “Synthesis of very fine maghemite particles,” Journal of Magnetism and Magnetic Materials, 149(1-2), 6-9, 1995

    A. Hagfeldt and M. Graetzel, “Light-induced Redox Reaction in Nanocrystalline Systems,” Chemical Review, 95(1) , 49-68, 1995

    A. Sinha, S. Nayar, B.K. Nath, D. Das, P.K. Mukhopadhyay, “Magnetic field induced synthesis and self-assembly of super paramagnetic particles in a protein matrix,” Colloids and Surfaces B: Biointerfaces, 43(1) , 7-11, 2005

    A. Cabot,V. F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M. A. Marcus, S. M. Hughes, and A. P. Alivisatos, “Vacancy coalescence during oxidation of iron nanoparticles,” Journal of the American Chemical Society, 129(34), 10358-10360, 2007

    B. L. Carson, V. Ellis, J. L. McCann, “Toxicology and biological monitoring of metals in Humans:Including Feasability and Need” CRC Press, Chelsea, Michigan, 71, 133-134, 1986

    B. C. Faust, M.R. Hoffmann, D.W. Bahnemann, "Kinetics and Mechanism of the Photoassisted Oxidation of Sulfur Dioxide on Hematite (α-Fe2O3),” The Journal of Physical Chemistry, 93, 6371-6381, 1989

    B. Pal, M. Sharon, G. Nogami, ”Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties,” Materials Chemistry and Physics, 59(3), 254-261, 1999

    B.Yu, Y. Zhang, A. Shukla, S. S. Shukla, K.L. Dorris, “The removal of heavy metal from aqueous solutions by sawdust adsorption — removal of copper,” Journal of Hazardous Materials, 80(1-3), 33-42, 2000

    B. Gao, Y. J. Kim, A. K. Chakraborty, W. I. Lee,” Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation ,“Applied Catalysis B: Environmental, 83(3-4), 202-207, 2008

    B. Gilbert, C. Frandsen, E. R. Maxey, and D. M. Sherman, “Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy,” Physical Review B, 79(3), 035108-1~035108-7, 2009

    C. P. Huang, M. L. Vane, “Enhancing As5+ removal by a Fe2+-treated activated carbon,” Research Journal of the Water Pollution Control Federation, 61(9-10), 1596-1603, 1989

    C. Pulgarin, J. Kiwi, “Iron Oxide-Mediated Degradation, Photodegradation, and Biodegradation of Aminophenols,” Langmuir, 11(2), 519-526, 1995

    C. L. Peacock and D. M. Sherman,” Copper(II) sorption onto goethite, hematite and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy,” Geochimica et Cosmochimica Acta, 68(12), 2623-2637, 2003

    C. Carbone, F. Di Benedetto, P. Marescotti, C. Sangregorio, L. Sorace, N. Lima, M. Romanelli, G. Lucchetti, and C. Cipriani, “Natural Fe-oxide and -oxyhydroxide nanoparticles: an EPR and SQUID investigation,” Mineralogy and Petrology, 85(1-2), 19-32, 2005

    C. Chiteme, A.F. Mulaba-Bafubiandi,” An investigation on electrical properties of microwave treated natural ilmenite (FeTiO3),” Journal of Materials Science, 41(8), 2365-2372, 2006

    Chien-tsung wang, “Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation,” Journal of Non-Crystalline Solids, 353(11-12), 1126-1133, 2007

    C. S. Petitto, S. K. Tanwar, K.S. Ghose, J. P.Eng, P.T. Trainor, “Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction,“ Surface Science, 604(13-14), 1082-1093, 2010

    D. S. Ginley, M.A. Butler,” Dependence of photocatalytic activity on the compositions and photo-absorption of functional TiO2–Fe3O4 coatings deposited by plasma spray,” Journal of Applied Physics, 48(5), 1021-2019, 1977

    D. L. Leslie-Pelecky, R. D. Rieke, "Magnetic Properties of Nanostructured Materials," Chemistry of Materials, 8(8), 1770-1783, 1996

    D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide,” Journal of Molecular Catalysis A: Chemical, 180(1-2), 193-200, 2002

    D. Maity, D.C. Agrawal, “Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media,” Journal of Magnetism and Magnetic Materials, 308(1), 46-55, 2007

    E. Diaz-Barrientos , L. Madrid, M. C. Contreras and E. Morillo, “Simultaneous adsorption of zinc and phosphate on synthetic lepidocrocite,” Australian Journal of Soil Research, 28(4), 549-557, 1990

    E. V Shevchenko, D. V.Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, H. Weller, “Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals ,” Journal of the American Chemical Society, 125(30), 9090-9101, 2003

    E. Pehlivan, T. Altun,”The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin,” Journal of hazardous materials, 134(1-3), 146–159, 2006

    E. S. Mora, E. G. Barojas, E. R. Rojas, R. S.a Gonza’ lez, “Morphological, optical and photocatalytic properties of TiO2–Fe2O3 multilayers,” Solar Energy Materials & Solar Cells, 91, 1412–1415, 2007

    G. F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” Journal of Applied Physics, 94(5), 3520-3528, 2003

    H. Miyoshi, H. Mori, and H. Yoneyama, ”Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions,” Langmuir, 7(3), 503-507, 1991

    H. Lin, H. Sakamoto, W.S. Seo, K. Kuwabara, K. Koumoto, “Crystal Growth of Lepidocrocite and Magnetite under Langmuir Monolayers,” Journal of Crystal Growth, 192(1-2), 250-256, 1998

    H. Itoh and T. Sugimoto, “Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles,” Journal of Colloid and Interface Science, 265(2), 283-295, 2003

    I. Nedkov, T. Merodiiska, L. Slavov, R.E. Vandenberghe,Y. Kusano, J. Takada, “Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation,” Journal of Magnetism and Magnetic Materials, 300(2), 358-367, 2006

    I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Pérez-Hernández, J. Arenas-Alatorre, “Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature,” Materials Letters, 61(23-24), 4447-4451, 2007

    J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,”Catal. Today, 53(1), 115-129, 1999

    J. S. Han, T. Bredow, D.E. Davey, A.B. Yu, D.E. Mulcahy, “The effect of Al addition on the gas sensing properties of Fe2O3-based sensors,” Sensors and Actuators B, 75(1-2), 18-23, 2001

    J. Chen, L. Xu, W. Li, X. Gou, “α-Fe2O3 nanotubes in gas sensor and lithium-ion batteriey applications,” Advanced Materials, 17(5), 582-586, 2005

    J. Park, E. Lee, N. M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, T. Hyeon, “One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles,” Angewandte Chemie International Edition, 44(19), 2872-2877, 2005

    J. Mona, S.N. Kale, A.B. Gaikwad , A.V. Murugan, V. Ravi, “Chemical methods to synthesize FeTiO3 powder,” Materials Letters, 60(11), 1425-1427, 2006

    Jyi-Yeong Tseng , Ching-Yuan Chang, Yi-Hung Chen, Chiung-Fen Chang, Pen-Chi Chiang,” Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(II) ion,” Colloids and Surfaces A: Physicochem. Eng., 295(1-3), 209–216, 2007

    J. Bandara, U. Klehm, J. Kiwi, “Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation,”Applied Catalysis B: Environmental, 76 73–81, 2007

    J. Li , J. Hu, G. Sheng, G. Zhao, Q. Huang, “Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite,” Colloids and Surfaces A: Physicochem. Eng., 349(1-3), 195-201, 2009

    K. J. Kim, D.W. Moon, S.K. Lee, K.-H. Jung, “Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines,” Thin Solid Films, 360(1-2), 118-121, 2000

    K. Nishio, M. Ikeda, N. Gokon, S. Tsubouchi, H. Narimatsu, Y. Mochizuki, S. Sakamoto, A. Sandhu, M. Abe, H. Hand, “Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications,” Journal of Magnetism and Magnetic Materials, 310(3), 2408-2410, 2007

    L. C. Varanda, M. P. Morales, M. Jafelicci, Jr and C. J. Serna, “Monodispersed spindle-type goethite nanoparticles from FeIII solutions,” Journal of materials chemistry, 12(12), 3649 – 3653, 2002

    L. Signorini, L. Pasquini, L. Savini, R. Carboni, F. Boscherini, E. Bonetti, A. Giglia, M. Pedio, N. Mahne, S. Nannarone,“Size-dependent oxidation in iron/iron oxide core-shell nanoparticles,” Physical Review B, 68, 195423-1~195423-8, 2003

    M. M. Benjamin, J.O. Leckie, “Multiple-site adsorption of Cd, Cu, Zn, and Pb on  amorphous iron oxyhydroxide,” Journal Colloid and Interface Science., 79(1), 209-221, 1981

    M. A. Fox, M.T. Dulay, “Heterogeneous photocatalysis,” Chemical Review, 93(3), 341-357, 1993

    M. Erdemo˘glu, M. Sarıkaya, “Effects of heavy metals and oxalate on the zeta potential of magnetite,” Journal of Colloid and Interface Science, 300(2), 795-804, 2006

    M. H. Khedr, K. S. Abdel Halim, N. K. Soliman, “Synthesis and photocatalytic activity of nano-sized iron oxides,” Materials Letters, 63(6-7), 598-601, 2009

    N. C. Wilson, J. Muscat, D. Mkhonto, P. E. Ngoepe, and N. M. Harrison, “Structure and properties of ilmenite from first principles,” Physical Review B, 71, 075202-1~075202-9, 2005

    P. Mazellier, M. Bolte, “Heterogeneous light-induced transformation of 2,6-dimethylphenol in aqueous suspensions containing goethite,” Journal of Photochemistry and Photobiology A: Chemistry, 132(1-2), 129-135, 2000

    P. Li, D. E. Miser, S. Rabiei, R. T. Yadav, M. R. Hajaligol, “The Removal of Carbon Monoxide by Iron Oxide Nanoparticles,” Applied Catalysis B: Environmental, 43(2), 151-162, 2003

    P. Yuan, H. P. He, F. Bergaya, D. Q. Wu, Q. Zhou, J. X. Zhu. “Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure,” Microporous and Mesoporous Materials, 88(1-3), 8-15, 2006

    P. Baldrian, V. Merhautova, J. Gabriel, F. Nerud, P. Stopka , M. Hruby , M. J. Benes, “Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides.” Applied Catalysis B: Environmental, 66(3-4), 258-264, 2006

    P. I. Girginova, A. L. Daniel-da-Silva, C. B. Lopes, P. Figueira, M. Otero, V. S. Amaral, E. Pereira and T. Trindade, “Silica coated magnetite particles for magnetic removal of Hg2+ from water ,“ Journal of Colloid and Interface Science, 345(2), 234-240, 2010

    R. M. Cornell, U. Schwertmann, “The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses,” John Wiley and Sons, 1-604, 1996

    S. Chatterjee, S. Sarkar, S. N. Bhattacharyya, “Size effect in the photochemical generation of hydrogen from water by colloidal Fe2O3 particles,” Journal of Photochemistry and Photobiology A: Chemistry, 72(2), 183-187, 1993

    S. Akbar , S.K. Hasanain , N. Azmat and M. Nadeem,”Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations,“ Materials Science, 1-19, 2004

    S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li , “Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles,” Journal of the American Chemical Society, 126(1), 273-279, 2004

    S. Bakardjieva, V. Stengl, J. Subrt, V. Houskova, P. Kalenda, “Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol,” Journal of Physics and Chemistry of Solids, 68(5-6), 721-724, 2007

    S. Zeng, K. Tang, T. Li, “Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties,” Journal of Colloid and Interface Science, 312(2), 513-521, 2007

    T. Takada, M. Kiyama, ” Preparation of ferrites by wet method, ” Proceedings of the International Conference on Ferrites, Kyoto, 69-71, 1970

    T. P. Raming, A. J. A. Winnubst, 1 C. M. van Kats, and A. P. Philipse, ” The synthesis and magnetic properties of nanosized hematite(α-Fe2O3) particles,” Journal of Colloid and Interface Science, 249, 346-350, 2002

    T. Kawahara, K. Yamada, H. Tada, “Visible light photocatalytic decomposition of 2-naphthol by anodic-biased alpha-Fe2O3 film,” Journal of Colloid and Interface Science, 294(2), 504-507, 2006

    T. Fujii, Y. Takada, M. Nakanishi, and J. Takada, M. Kimura and H. Yoshikawa, “Electronic structure of stoichiometric and non-stoichiometric epitaxial FeTiO3+δ films,” Journal of Physics: Conference Series, 100(1), 012043-1~012043-4, 2008

    U. Schwertmann and R. M. Cornell, “Iron oxides in the laboratory: preparation and characterization,” Wiley-VCH, 1-188, 1991

    W. Janusz, E. Skwarek, “Adsorption of Ni(II) ions at the FeTiO3/NaCl interface-structure of electrical double layer,” Physicochemical Problems of Mineral Processing, 39, 77-88, 2005

    W. Li, S. Zhang , W. Jiang, X. Shan, “Effect of phosphate on the adsorption of Cu and Cd on natural hematite,” Chemosphere, 63(8), 1235-1241, 2006

    W. Li, S. Zhang, W. Jiang, X. Shan, “Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption,” Colloids and Surfaces A: Physicochem. Eng., 293(1-3), 13-19, 2007

    X. Tang, K . Hu, “The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process,” Journal of Materials Science, 41(23), 8025-8028, 2006

    X. Wu, G. Steinle-Neumann, O. Narygina, I. Kantor, C. McCammon, S. Pascarelli, G. Aquilanti, V. Prakapenka , “Iron oxidation state of FeTiO3 under high pressure,” Physical Review B, 79094106-1~094106-7, 2009

    Y. S.Kang, S. Risbud, J. F. Rabolt, P. Stroeve,” Magnetic Orientation of Chemically Partially Ordered FePt Nanoparticles by Annealing in Magnetic Field,” Chemistry of Materials, 8(9), 2209-2211, 1996

    Y. Cudennec, A. Lecerf , “Topotactic transformations of goethite and lepidocrocite into hematite and Maghemite,” Solid State Sciences, 7(5), 520-529, 2005

    李家瑋(2004)γ-Fe2O3奈米粒子的表面修飾及其生化上的應用,國立成功大學化學研究所碩士論文。

    李琦峰(2005)超順磁性奈米粒子的表面電荷於DNA分離上的應用與α-Fe2O3奈米粒子之製備,國立成功大學化學研究所碩士論文。

    孫嘉福、駱尚廉 (1994) 氧化鐵之特性與應用,自來水會刊雜誌第49 期,pp. 47。

    陳益國(2003)二氧化鈦光觸媒奈米粉末之製備及其光催化效果之研究,國立雲林科技大學化學工程系研究所碩士論文。

    黃志良(1993)製備針鐵礦粒徑之影響因素研究,國立成功大學礦冶及材料科學研究所碩士論文。

    張益新(2004)鈦鐵礦結構Zn1-xAXTi1-yO3之合成及性質研究,國立成功大學材料科學及工程研究所碩士論文。

    溫明鏡 (2003) 氧化鐵磁性奈米粒子之合成與特性研究,國立中正大學物理研究所項士論文。

    賴進興 (1995) 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,國立臺灣大學環境工程研究所博士論文。

    蘇亮誌 (2004) 鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究,國立成功大學化學工程研究所碩士論文。

    下載圖示 校內:2011-09-13公開
    校外:2011-09-13公開
    QR CODE