簡易檢索 / 詳目顯示

研究生: 黃姵文
Huang, Pei-Wen
論文名稱: 模擬θ-Al2O3@PEG 核殼技術製作細晶粒α-Al2O3生坯之特性觀察
Characterization of nano-sized α-Al2O3 compacts prepared by Modified θ-Al2O3@PEG technology
指導教授: 向性一
Hsiang, Hsing-I
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 核殼技術陶瓷生坯氧化鋁晶粒成長蠕蟲成長現象
外文關鍵詞: Core shell technology, Ceramics geen body, Alumina, Ctystal growth, Vermicular growth phenomenon
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究想製作粒徑小於100nm的α-Al2O3生坯,以供未來製作微米級氧化鋁(陶瓷)之用。利用晶徑接近相變臨界晶徑(dcθ=25nm)之θ-Al2O3粒體,模擬核殼技術於其粒體外包覆三種不同厚度的PEG(Polyethylene glycol)膜,其厚度為2、2.36、2.7nm,得到模擬θ-Al2O3(Core)@PEG(Shell)核殼粉末。再分別以464、438、412、387MPa單軸加壓成含PEG的θ-Al2O3生坯。所有試樣均先以DTA觀察其除去PEG及θ-至α-Al2O3相變的溫度。研究分成兩部分觀察:第一部分由室溫加熱至600℃持溫30分鐘得到去除PEG之θ-Al2O3生坯。以BET觀察晶徑粗化與生坯相對理論密度及相變溫度關係,以找出有沒有可能得到θ-Al2O3粒體變化不大,但粒體各自分離,堆積密度又高的θ-Al2O3生坯;第二部分把θ-Al2O3(Core)@PEG(Shell)生坯,或已去PEG之θ-Al2O3生坯,在θ-至α-Al2O3相變開始溫度1150℃下,以不同持溫時間進行煆燒,製作α-Al2O3生坯。得到的生坯再以BET、XRD、SEM觀察生坯內粉末的α-Al2O3生成量與粒徑,及坯體堆積密度變化。以瞭解製作粒徑<100nm 之α-Al2O3生坯的方法。
    研究結果顯示去除掉PEG後的θ-Al2O3生坯其生坯堆積密度介於50-54%理論密度。密度越高比表面積值也越大,且相變溫度也越高,並高於未加PEG的試樣。說明可製作與原θ-Al2O3粉末粒徑相近,同時粒體各自分離的θ-Al2O3生坯。第二部分利用第一部分得到最佳高密度細晶粒的θ-Al2O3生坯條件,得到的α-Al2O3生坯發現,藉由α-Al2O3生成量與XRD-Scherrer diameter及比表面積分析得知,相變後的α-Al2O3晶徑絕大部份停留在50.5-55.5nm間。蠕蟲現象在α-Al2O3生成量超過70%後開始發生。故要製作出晶徑小於100nm的α-Al2O3生坯,可採用模擬θ-Al2O3@2nmPEG技術製作的θ-Al2O3生坯,將及熱處理,得到α-Al2O3生坯。此時可控制α-Al2O3的生成在70-80%。所得之生坯密度可達60%理論密度。

    Modified θ-Al2O3@PEG powders were prepared by mixing θ-Al2O3 powders with PEG so as to form a 2nm thickness PEG coating on the θ-Al2O3 particles. The core-shell powder was used to prepare nano-sized α-Al2O3 compacts. The presence of PEG in θ-Al2O3 compacts provided the function to fabricate a compact in which the original θ-Al2O3 particles would be apart individually. The α-Al2O3 compacts then were achieved by subsequent thermal treatments following the size character that occurs to α-Al2O3 during θ- to α- Al2O3 phase transformation. The α-Al2O3 compacts thus obtained possess of phase purity 70-80% α-Al2O3, crystallite size 50-100nm in diameter, and relative density > 60 % of T. D.

    中文摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究設計 2 第二章 相關文獻回顧與整理 3 2.1 氧化鋁及其過度相 3 2.1.1 氧化鋁相變 3 2.1.2 氧化鋁的結晶相 5 2.2 由θ-到α-Al2O3相轉換的理論基礎 10 2.3 粉體堆積效應[34]與成形方法 14 2.4 聚乙二醇(Polyethylene glycol,PEG)分散原理 19 第三章 研究方法及步驟 20 3.1 實驗原料 20 3.2 實驗方法 22 3.3 特性分析 25 3.3.1 熱差分析 25 3.3.2 粉末結晶相分析 25 3.3.3 Al2O3粉體之平均晶徑分析 25 3.3.4 α-Al2O3生成量定量分析 26 3.3.5 粉末比表面積分析 28 3.3.6 顯微結構及結構分析 28 3.3.7 生坯密度量測 29 第四章 結果與討論 30 4.1 包覆不同PEG厚度與去除PEG之θ-Al2O3生坯性質分析 30 4.1.1 θ-Al2O3生坯密度 30 4.1.2 θ→α-Al2O3相轉變溫度的變化 32 4.2 α-Al2O3生坯體分析 40 4.2.1 θ→α-Al2O3相轉換過程坯體系統晶徑變化 40 4.2.2 蠕蟲狀成長與α-Al2O3生成量的關係 42 4.3 蠕蟲狀現象對α-Al2O3生坯體密度之影響 46 第五章 結論 48 參考文獻 49 附錄 53

    [1] W. H. Gitzen (edited), Alumina as a Ceramic Material, The American Ceramic Society, 2006.
    [2] E. Dorre and H. Hubner, Alumina:Processing, Properties, and Applications , Springer, 1984.
    [3] Z. Q. Wei, T. D. Xia, L. F. Bai, Efficient preparation for Ni nanopowders by anodic arc plasma [J ]. Mater Lett ,(60), 766, 2006.
    [4] H. G. Zheng, J. Liang, J. H. Zeng, Preparation of nickel nanopowders in ethanol water system ( EWS) [J ]. Mater Res Bull, (36), 947, 2001.
    [5] 許珂敬 ,楊新春 ,許煜汾, “表面活性劑在膠體製備過程中的作用[J]. ”中國有色金屬學報, 8 ,(2) ,560, 1998.
    [6] T. G. Langdon,“Review Paper Superplastic-like Flow in Ceramics: Recent Development and Potential Application,” Ceramics International, 19, 279-286, 1993.
    [7] 楊榮澤, “20 至 100 nm α-Al2O3 晶粒的熱力學特性, ” 成功大學資源工程學系碩士學位論文, 2003.
    [8] 郝成偉, 吳伯麟, 李繼彥. “聚乙二醇分散劑對高纯超细 α-Al2O3 製備的影響. ”無機化學學報, 2007.
    [9] R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, γ and θ transition aluminas, ” Acta Crystallographica Section B: Structural Science, 47, (5), 617-630, 1991.
    [10] K. Wefers and C. Misra, “Oxides and hydroxides of aluminum, ” Alcoa Technical Paper, no. 19, Alcoa laboratories, Pittsburgh, 47, 1987.
    [11] J. L. McArdle and G. L. Messing, "Transformation, microstructure 63 development, and densification in α-Fe2O3-seeded boehmite-derived alumina," Journal of the American Ceramic Society, 76, (1), 214- 222, 1993.
    [12] I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences," Journal of the American Ceramic Society, 81, (8), 1995-2012, 1998.
    [13] H. Saalfeld, " The dehydration of gibbsite and the structure of a tetragonal γ- Al2O3," Clay Minerals Buletinl, 3, (19), 249-56, 1958.
    [14] J. Kohn, G. Katz, and J. Broder, "Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3," American Mineralogist, 42, 398, 1957.
    [15] S. Geller, "Crystal structure of β‐Ga2O3," The Journal of Chemical Physics, 33, (3), 676-684, 1960.
    [16] M. Munro, " Evaluated material properties for a sintered alpha ‐ alumina," Journal of the American Ceramic Society, 80, (8), 1919-1928, 1997.
    [17] Y.-M. Chiang, D. P. Birnie, W. D. Kingery, and S. Newcomb, “Physical ceramics: principles for ceramic science and engineering,” John Wiley & Sons, New York, 1997.
    [18] Badkar P. A. and Bailey J. E., “The mechanism of simultaneous sintering and phase transformation in alumina,” Journal of Materials Science, 11, 1794-1806, 1976.
    [19] K. J. Morrissey, K. K. Czanderna, C. B. Carter, and R. P. Merrill, “Growth of α-Al2O3 within a transition alumina matrix,” Communications of the American Ceramic Society, C88-C90, 1984.
    [20] T. C. Chou and T. G. Nieh, “Nucleation and concurrent anomalous grain growth of α-Al2O3 during γ→α pahse transformation,” Journal of the American Ceramic Society, 74, (9), 2270-2279, 1991.
    [21] T. C. Chou and T. G. Nieh , “Interface-controlled phase transformation and abnormal grain growth of α-Al2O3 in thin γ-alumina films,” Thin Solid Films, 221, (2), 89-97, 1992.
    [22] J. R. Wynnyckyj and C. G. Morris, “A shear-type allotropic transformation in alumina,” Metallurgical transactions B, 16B, 345-353, 1985.
    [23] F. W. Dynys and J. W. Halloran , “Alpha alumina formation in alum-derived gamma alumina,” Journal of the American Ceramic Society, 65, (9), 442-448, 1982.
    [24] F. W. Dynys and J. W.Halloran, “Alpha alumina formation in Al2O3 gels,” pp. 142-151 in Ultrastructure Processing of Ceramics, Glasses and Composites, Edited by L. L. Hench and D. R. Ulrich. John Wiley and Sons, New York, 1984.
    [25] Y. Yang, Y. C. Wu, Y. Li, and P. Cui, “Preparation of ultrafine powders by thermal decomposition of AACH at low temperature,” The Chinese Journal of Process Engineering, 2, (4), 325-329, 2002.
    [26] P. C. Yu, R. J. Yang, Y. T. Chang, and F. S. Yen, “Fabrication of nano-scaled α-Al2O3 crystallites through heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3–suspensions,” Journal of the American Ceramic Society, 90, (8), 2340-2346, 2007.
    [27] H. L. Wen, Y. Y. Chen, F. S. Yen, and C. Y. Huang, “Size characterization of θ- and α-Al2O3 crystallites during phase transformation,” Nanostructured mater, 11, (1), 89-101, 1999.
    [28] H. L. Wen and F. S. Yen, “Growth characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation,” Journal of Crystal Growth, 208, 696-708, 2000.
    [29] M. L. Panchula. and J. Y. Ying, “Mechanical synthesis of nanocrystalline α-Al2O3 seeds for enhanced transformation kinetics,” Nanostructured Mater, 9, 161-164, 1997.
    [30] G. Carturan, R. D. Maggio, M. Montagna, O. Pilla, and P. Scard, “Kinetics of phase separation and thermal behavior of gel-derived Al2O3 doped by Cr2O3: an X-ray diffraction and fluorescence spectroscopy study,” Journal of Materials Science, 25, 2705-2710, 1990.
    [31] S. Rajendran, “Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics,” Journal of Materials Science, 29, 5664-5672, 1994.
    [32] R. M. Laine, J. C. Marchal, H. P. Sun, and X. Q. Pan, “Nano-α-Al2O3 by liquid-feed flame spray pyrolysis,” Nature Mater, 5, 710-712, 2006.
    [33] G. P. Johnston, R. Muenchausen, and D. M. Smith, “Reactive laser ablation synthesis of nanosize alumina powder,” Journal of the American Ceramic Society, 75, (12), 3293-3298, 1992.
    [34] J. S. Reed, “Principles of ceramics processing, ” John Wiley & Sons, New York, 1995.
    [35] M. N. Rahaman, L. C. Jonghe, and M. Y. Chu, "Effect of green density on densification and creep during sintering," Journal of the American Ceramic Society, 74, (3), 514-519, 1991.
    [36] 李玄閔, “不同粒徑分佈與凝聚狀態之 α-氧化鋁粉末的成型及燒結行為,”成功大學資源工程學系碩士學位論文, 2004.
    [37] A. Krell, P. Blank, H. Ma, T. Hutzler, and M. Nebelung, "Processing of high‐ density submicrometer Al2O3 for new applications," Journal of the American Ceramic Society, 86, (4), 546-53, 2003.
    [38] A. Krell and J. Klimke, "Effects of the Homogeneity of Particle Coordination on Solid‐State Sintering of Transparent Alumina," Journal of the American Ceramic Society, 89, (6), 1985-1992, 2006.
    [39] 顧峰 ,沈悅 ,徐超 ,等.分散劑聚合度對奈米氧化鋁粉體特性的影響[J].功能材料, 36, (2), 318, 2005.
    [40] 葉云 ,李巧玲 ,景红霞 ,等.分散劑對奈米鐵酸鹽製備的影響及TEM表徵[J].電子顯微學報, 25(增刊), 75, 2006.
    [41] 鄒同征, 涂江平, 夏正志, 等.聚乙二醇為分散劑的沉澱法製備 IF2MoS2 [J].無機化學學報, 21, (8), 117, 2005.
    [42] 劉付勝聰 ,肖漢寧 ,李玉平 ,等. 奈米TiO2表面吸附聚乙二醇及其分散稳定性的研究[J]. 無機材料學報, 20, (2), 310, 2005.
    [43] 朱曉文 ,李登好.聚電解質分散劑對超细氧化鋁懸浮液穩定性的影響[J].淮阴工學院學報, 15, (1), 50, 2006.
    [44] X. H. Liu, "An improvement on sol-gel method for preparing ultrafine and crystallized titania powder." Materials Science and Engineering, A289, (1-2), 241-245, 2000.
    [45] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
    [46] C. S. Nordahl and G. L. Messing, “Sintering of α-Al2O3-seeded nano crystalline γ-Al2O3 powders,” Journal of the European Ceramic Society, 22, 415-422, 2002.
    [47] P. C. Yu and F. S. Yen “On the High Pure Alumina Composite Powder for Sintering at 1400oC,A Preliminary Investigation” Key Engineering Materials, 313, (July), 59-62, 2006.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE