簡易檢索 / 詳目顯示

研究生: 陳柏豪
Chen, Po-Hao
論文名稱: 燃煤底灰添加碳酸鎂、二氧化鈦轉化微晶 玻璃其熱處理程序之研究
Thermal Processing of Glass Ceramics Transformed from Coal Bottom Ash with MgCO3 and TiO2 Additive
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 底灰微晶玻璃堇青石
外文關鍵詞: bottom ash, glass ceramics, Cordierite
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前國內燃煤電廠每年產生約40萬噸之底灰,但利用率相當低,多數堆置於灰塘中,面臨了堆置空間不足的困境。本實驗以燃煤底灰添加碳酸鎂及二氧化鈦熔製玻璃,並經由適當熱處理程序得微晶玻璃,以達底灰資源化的效果。
    利用DTA分析得知,20M5T及30M5T玻璃配方一階段熱處理之結晶活化能分別為95.73kJ/mol及102.87kJ/mol;二階段熱處理之結晶活化能分別為162.33kJ/mol及205.2kJ/mol。二階段熱處理之結晶活化能雖較一階段高,但由SEM結果發現二階段熱處理相對的結晶較多。
    基本物理性質量測方面,熱處理後之玻璃體密度皆大於原樣玻璃;而二階段熱處理之玻璃孔隙率低於一階段之玻璃,與二階段熱處理顯微照相孔洞較少之結果相互應。
    而20M5T玻璃配方熱處理至1200℃時,結晶相經XRD分析為堇青石(Cordierite)及假板鈦礦(Pseudobrookite),其二階段熱處理之熱膨脹係數(α)為60(10-7/℃),與粉末燒結之堇青石微晶玻璃熱膨脹係數相近。

    At present, there is approximately 400,000 tons of bottom ash produced by domestic coal-burning electric power plants annually. However, the utilization rate is comparatively low. Most of it has been piled up in the ash-pond so nowadays we are facing a difficulty of space deficiency to stack the bottom ash.
    In this research, adding MgCO3 and TiO2 to bottom ash to form glass and to transform glass ceramics through an appropriate heat-treatment processing to achieve the purpose of recycling of bottom ash.
    Using DTA analysis showed that, the crystallization activation energy of 20M5T and 30M5T glass formulation of one step heat-treatment were 95.73kJ/mol 102.87kJ/mol; the crystallization activation energy of two step heat-treatment were 162.33kJ/mol and 205.2kJ/mol. The crystallization activation energy of two step heat-treatment was higher than one step, but from the SEM results showed that the crystal site of two step heat-treatment was relatively large.
    Cordierite and Pseudobrookite were formed with 20M5T glass formulation at 1200℃. And the coefficient of thermal expansion of two step heat-treatment was 60(10-7℃), which was close to the coefficient of thermal expansion of Cordierite glass ceramic with powder sintering.
    As to the quality of basic physical measurements, the glass density after heat-treatment was greater than the original glass; while the glass porosity rate after two step heat-treatment was less than the glass of one step heat-treatment, which was parallel with the result of two step heat-treatment of micrograph that showed less holes.

    總目錄 摘要 I Abstract Ⅱ 致謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2研究目的 2 1-3 前人研究 3 第二章 理論基礎 5 2-1 燃煤底灰基本性質 5 2-2 玻璃形成理論 6 2-2-1 玻璃組成物質 7 2-3 微晶玻璃 9 2-3-1 微晶玻璃之製造 10 2-4 玻璃熱處理 11 2-5 相分離 14 2-6 結晶化過程 17 2-6-1 成核機制[17,18] 17 2-6-2 晶體成長 21 2-7 成核劑 21 第三章 實驗方法與步驟 22 3-1 實驗流程 22 3-2 底灰精製 24 3-3 玻璃熔製 24 3-4 熱處理程序 25 3-4-1 最大成核速率溫度 25 3-4-2 最適成核時間 25 3-4-3 結晶活化能 26 3-5 性質量測與分析 26 3-5-1 精底灰成份分析 26 3-5-2 熱差分析(DTA) 26 3-5-3 X-Ray繞射分析(XRD) 27 3-5-4 顯微結構分析(SEM) 27 3-5-5 基本物理性質量測 27 第四章 結果與討論 29 4-1 底灰化學成份分析 29 4-2 熱差分析 30 4-3 熱處理條件 32 4-3-1 最大成核速率溫度 32 4-3-2 最適成核時間 37 4-4 結晶相分析 41 4-4-1 底灰玻璃 42 4-4-2 20M5T玻璃配方 43 4-4-3 30M5T玻璃配方 46 4-5 結晶活化能 49 4-5-1 一階段熱處理之結晶活化能 49 4-5-2 二階段熱處理之結晶活化能 53 4-6 顯微結構分析 56 4-6-1 20M5T玻璃配方 56 4-6-2 30M5T玻璃配方 58 4-7 基本物理性質量測 60 第五章 結論與建議 62 5-1 結論 62 5-2 建議 63 參考文獻 65 表目錄 表1.1 興達電廠煤灰年產量及利用率 2 表2.1 旋節分相離分離與成核成長相分離之比較 17 表4.1 精底灰化學成份及配方表 29 表4.2 20M5T玻璃配方各溫度之結晶放熱峰及結晶放熱峰倒數 34 表4.3 30M5T玻璃配方各溫度之結晶放熱峰及結晶放熱峰倒數 36 表4.4 20M5T玻璃配方各成核時間之結晶放熱峰及結晶放熱峰倒數 38 表4.5 30M5T玻璃配方各成核時間之結晶放熱峰及結晶放熱峰倒數 40 表4.6 一階段及二階段熱處理條件 41 表4.7 20M5T玻璃配方結晶相之整理 46 表4.8 30M5T玻璃配方結晶相之整理 49 表4.9 20M5T玻璃配方一階段熱處理與結晶放熱峰關係表 51 表4.10 30M5T玻璃配方一階段熱處理與結晶放熱峰關係表 51 表4.11 20M5T玻璃配方二階段熱處理與結晶放熱峰關係表 54 表4.12 30M5T玻璃配方二階段熱處理與結晶放熱峰關係表 54 表4.13 20M5T玻璃配方基本物理性質分析表 61 表4.14 30M5T玻璃配方基本物理性質分析表 61 表4.15 20M5T及30M5T玻璃配方熱膨脹係數表 61 圖目錄 圖2.1 XRD圖-精底灰 6 圖2.2 (a)SiO2晶體(b)SiO2網狀結構圖 7 圖2.3 玻璃中間分子(Al2O3)取代玻璃形成份子(SiO2)圖 8 圖2.4 玻璃修飾分子進入玻璃網狀結構之示意圖 9 圖2.5 玻璃陶瓷熱處理示意圖 10 圖2.6 一階段及二階段熱處理示意圖 11 圖2.7 DTA圖-典型玻璃升溫曲線圖 13 圖2.8 相分離之自由能與化學組成圖 15 圖2.9 玻璃相分離微結構示意圖 16 圖2.10 成核之活化能-核半徑圖 19 圖2.11 異質成核之接觸角示意圖 20 圖3.1 實驗流程圖 23 圖4.1 DTA圖-20M5T玻璃配方之熱行為 31 圖4.2 DTA圖-30M5T玻璃配方之熱行為 31 圖4.3 XRD圖-20M5T玻璃配方預成核熱處理相變化 32 圖4.4 DTA圖-20M5T玻璃配方各成核溫度 33 圖4.5 20M5T玻璃配方最大成核速率溫度圖 34 圖4.6 XRD圖-30M5T玻璃配方預成核熱處理相變化 35 圖4.7 DTA圖-30M5T玻璃配方各成核溫度 36 圖4.8 30M5T玻璃配方最大成核速率溫度圖 37 圖4.9 DTA圖-20M5T玻璃配方於740℃各成核時間 38 圖4.10 20M5T玻璃配方於740℃之最適成核時間 39 圖4.11 DTA圖-30M5T玻璃配方於740℃各成核時間 39 圖4.12 30M5T玻璃配方於740℃之最適成核時間 40 圖4.13 XRD圖-20M5T及30M5T玻璃配方底灰玻璃 42 圖4.14 XRD圖-20M5T玻璃配方一階段熱處理 44 圖4.15 XRD圖-20M5T玻璃配方二階段熱處理 45 圖4.16 XRD圖-30M5T玻璃配方一階段熱處理 47 圖4.17 XRD圖-30M5T玻璃配方二階段熱處理 48 圖4.18 DTA圖-20M5T玻璃配方一階段熱處理各升溫速率 50 圖4.19 DTA圖-30M5T玻璃配方一階段熱處理各升溫速率 51 圖4.20 20M5T玻璃配方一階段熱處理之結晶活化能 52 圖4.21 30M5T玻璃配方一階段熱處理之結晶活化能 52 圖4.22 DTA圖-20M5T玻璃配方二階段熱處理各升溫速率 53 圖4.23 DTA圖-30M5T玻璃配方二階段熱處理各升溫速率 54 圖4.24 20M5T玻璃配方二階段熱處理活化能 55 圖4.25 30M5T玻璃配方二階段熱處理活化能 55 圖4.26 SEM圖-20M5T玻璃配方(a)一階段熱處理至1200℃ 57 圖4.27 SEM圖-30M5T玻璃配方(a)一階段熱處理至1200℃ 59

    1. 林雨謙,「燃煤底灰添加碳酸鈉-碳酸鈣轉化微晶玻璃之非等溫法結晶動力學研究」,國立成功大學資源工程研究所,碩士論文,2008.7.。
    2. 韓雄文,盧志昌,黃紀嚴,「利用燃煤電廠底灰製造玻璃陶瓷之研究」(NSC 90-2626-E-239-002)。
    3. 陳蒼霈,「燃煤底灰添加碳酸鎂製造玻璃陶瓷結晶行為之研究」,國立成功大學資源工程研究所,碩士論文,2003.7.。
    4. R. Cioffi, P. Pernice, A. Aronne, A. Marotta, “Nucleation and crystal growth in a fly ash derived glass, ” J. Master. Sci. 28 (1993) 6591-6594.
    5. R. Cioffi, P. Pernice, A. Aronne, M. Catauro, G. Quattroni, “Glass-Ceramics from fly ash with added MgO and TiO2, ” J. of the European Ceramic Society, 14 (1994) 517-521.
    6. W. Voegel and W. Hὄland, “Nucleation and crystallization kinetics of an MgO-Al2O3-SiO2 base glass with various dopants, ” Advances in ceramics, Volume 4 (1982) 125-145.
    7. H. Shao, K. Liang, F. Zhou, G.Wang, A.Hu, “Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass–ceramics, ” Materials Research Bulletin 40 (2005) 499–506.
    8. A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, J. M. F. Ferreira, “Non-isothermal crystallization kinetics of studies on MgO-Al2O3-SiO2-TiO2 glass, ” J. of the Non-Crystalline Solids 353 (2007) 2383-2391.
    9. B. E. Warren, “Kristallogy. Mineralog. Petrogr. ,” 86,349 (1993).
    10. P. W. McMillan, “Glass-Ceramics, ” 1979.
    11. 葉仁君,「燃煤底灰添加碳酸鋰轉化結晶玻璃其熱處理程序之研究」,國立成功大學資源工程研究所,碩士論文,2004.7.。
    12. 吳振名,「玻璃陶瓷」,陶瓷技術手冊,第二十八章。
    13. Z. Strnad, “Glass-Ceramics materials, ” 1986, Elsevier Science Publishing Company, Inc.
    14. C.T. Kniess, C.D.G de Borba, E. Neves, N.C. Kuhnen, H.G. Riella, “Obtaining and Characterizing Li2O-Al2O3-SiO2 Glass-Ceramics Using Coal Bottom Ash as Raw Material,” Interceram Vol. 51, No. 2, 2002.
    15. D.R. Gaskell, “Introduction to the Thermodynamics of Materials, ” 2003.
    16. 張智強、丁原傑,「簡釋玻璃分相與應用」,國立聯合大學玻璃及光纖材料研究中心。
    17. W. D. Kingery, H.K Bowen, D.R Uhlmann, “Introduction to ceramics, ” Second Edition, 1976, JOHN WILEY & SONS.
    18. R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles, ” 1994.
    19. M. Mingsheng, N. Wen, W. Yali, W. Zhongjie, L. Fengmei, “The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system, ” J. of Non-Crystalline Solids 354 (2008) 5395-5401.
    20. M. I. Kalinin, E. V. Podushko, “Crystallized glasses based on cordierite, ” The Structure of Glass, Volume 3 (1964) 175-176.
    21. A. Marotta, A. Buri, F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci., 16 (1981) 341-344.
    22. H. C. Park, S. H. Lee, B. K. Ryu, “Nucleation and crystallization kinetics of CaO-Al2O3-2SiO2 in powdered anorthite glass,” J. Mater. Sci. , 31 (1996) 4249-4253.
    23. M. Guedes, A.C. Ferro, J.M.F. Ferreira, “Nucleation and crystal growth in commercial LAS compositions, ” J. of the European Ceramic Society, 21 (2001) 1187-1194.
    24. H. E. Kissinger, Anal. Chem. 29 (1957) 1702.
    25. 李偉立,「蛇紋岩的純化與其合成菫青石陶瓷體之研究」,國立成功大學資源工程研究所,碩士論文,2007.5.。
    26. D. T. Weaver, D. C. Van Aken, J. D. Smith, “The role of TiO2 and composition in the devitrification of near-stoichiometric cordierite, ” J. of Mater. Sci. 39 (2004) 51– 59.

    下載圖示 校內:2011-08-12公開
    校外:2011-08-12公開
    QR CODE