| 研究生: |
郭文生 Surya, Vincentius |
|---|---|
| 論文名稱: |
批次共沸蒸餾程序之最適合成與排程策略 Optimal Synthesis and Scheduling Strategies for Batch Azeotropic Distillation Processes |
| 指導教授: |
張珏庭
Chuei-Tin, Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 異相或均相共沸蒸餾 、批次排程 、恆沸物 、狀態-工作網路 、數學規劃模式 |
| 外文關鍵詞: | heterogeneous or homogeneous distillation, batch scheduling, mathematical programming model, state-task network, azeotrope |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們藉由考慮流程與排程整合上的議題,發展出批次共沸蒸餾系統的接續式設計方法。此方法可分為兩個階段進行:首先以整數規劃(IP)模式求取最適流程(或所謂狀態-工作網路),接著再以混整數線性規劃(MILP)模式得到最適短期排程。另外,我們也可以利用混整數非線性規劃(MINLP)模式產生出最適週期排程,並且利用事件點的觀念來幫助模式中連續時間的表示。最後,我們以一系列的案例研究來展示上述模式之使用步驟,並且可以得到令人滿意的流程結構和生產排程。
By addressing both flow sheet generation and scheduling issues, a sequential design method has been developed in this work for the batch azeotropic distillation systems. The proposed strategies can be applied in two stages. Firstly, an Integer Programming (IP) is solved to produce the optimal flow sheet (or state-task network). A Mixed Integer Linear Programming Model (MILP) is then constructed accordingly for generating the optimal short-term schedule. On the other hand, a Mixed Integer Non-Linear Programming (MINLP) is also constructed for generating optimal cyclic schedule. The concept of event points is adopted to facilitate the continuous-time representation in this formulation. The implementation procedure is demonstrated with several case studies. Satisfactory process configurations and production schedules can both be produced in all the cases we have studied so far.
Ahmad, B. S. & Barton, P. I. Homogeneous multicomponent azeotropic batch distillation. AIChE Journal, 42, 12, 3419-3433, 1996.
Ahmad, B. S., Zhang, Y., & Barton, P. I. Product sequences in azeotropic batch distillation. AIChE Journal, 44, 5, 1051-1070, 1998.
Arlt, W., Spuhl, O., & Klamt. A. Challenges in thermodynamics. Chemical Engineering & Processing, 43, 221-238, 2004.
Aspen Plus 11.1: User guide. Aspen Technology, Inc., 2001.
Bauer, M. H. & Stichlmair, J. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming. Computers & Chemical Engineering, 22, 9, 1271-1286, 1998.
Bertok, B., Friedler, F., Feng, G., & Fan, L. T. Systematic generation of the optimal and alternative flowsheets for azeotropic-distillation systems. European Symposium on Computer Aided Process Engineering, 11, 351-356, 2001.
Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. GAMS: A user's guide, GAMS Development Corporation, 1998.
Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. Systematic methods of chemical process design. Prentice-Hall, Inc. 1997.
Chou, H. H. & Chang, C. T. Petri-Net based strategy to synthesize the operating procedures for cleaning pipeline networks. Industrial & Engineering Chemistry Research, 44, 114-123, 2005.
Dechema e. V. DETHERM… on the WEB: Thermophysical properties of pure substances & mixtures. Retrieved March 18th, 2008, from http://i-systems.dechema.de/detherm/mixture.php? 2007.
Doherty, M. F. & Malone, M. F. Conceptual design of distillation systems. McGraw-Hill, New York, 2001.
Feng, G., Fan, L. T., & Friedler, F. Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems. Waste Management, 20, 639-643, 2000.
Feng, G., Fan, L. T., Friedler F., & Seib, P. A. Identifying operating units for the design and synthesis of azeotropic-distillation systems. Industrial & Engineering Chemistry Research, 39, 175-184, 2000.
Feng, G., Fan, L. T., Seib, P. A., Bertok, B., Kalotai, L., & Friedler, F. Graph-theoretic method for the algorithmic synthesis of azeotropic-distillation systems. Industrial & Engineering Chemical Research, 42, 3602-3611, 2003.
Fidkowski, Z. T., Malone, M. F., & Doherty, M. F. Computing azeotropes in multicomponent mixtures. Computers & Chemical Engineering, 17, 1141-1155, 1993.
Fien, Gert-Jan A. F. & Liu, Y. A. Heuristic synthesis and shortcut design of separation processes using residue curve maps: A review. Industrial & Engineering Chemistry Research, 33, 2502-2522, 1994.
Floudas, C. A., Akrotirianakis, I. G., Caratzoulas, S., Meyer, C.A., & Kallrath, J. Global optimization in the 21st century: Advances and challenges. Computers & Chemical Engineering, 29, 1185-1202, 2005.
Floudas, C. A. & Lin, X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Computers & Chemical Engineering, 28, 2109-2129, 2004.
Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. Graph-theoretic approach to process synthesis: Axioms and theorems. Chemical Engineering Science, 47, 1973-1988, 1992.
Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation. Computers & Chemical Engineering, 17, 929-942, 1993.
Friedler, F., Varga, J. B., & Fan, L. T. Decision-mapping: A tool for consistent and complete decisions in process synthesis. Chemical Engineering Science, 50, 1755-1768, 1995.
GAMS/CPLEX 11.0 User notes. ILOG Inc., 2007.
GAMS: The solver manuals. GAMS Development Corporation, 2008.
Grossmann, I. E., Viswanathan, J., Vecchietti, A., Raman, R., & Kalvelagen. E. GAMS/DICOPT: A discrete continuous optimization package. GAMS Corporation, Inc., 2003.
Ierapetritou, M. G. & Floudas, C. A. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Industrial & Engineering Chemical Research, 37, 4341-4359, 1998.
Ierapetritou, M. G. & Floudas, C. A. Effective continuous-time formulation for short-term scheduling. 2. Multipurpose/multiproduct continuous processes. Industrial & Engineering Chemical Research, 37, 4360-4374, 1998.
Ierapetritou, M. G. & Floudas, C. A. Short-term scheduling: New mathematical models vs algorithmic improvements. Computers & Chemical Engineering, 22, Suppl., S419-S426, 1998.
Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. Production scheduling of a large-scale industrial batch plant. I. Short-term and medium-term scheduling. Industrial & Engineering Chemistry Research, 45, 8234-8252, 2006.
Janak, S. L., Floudas, C. A., Kallrath, J., & Vormbrock, N. Production Scheduling of a large-scale industrial batch plant. II. Reactive scheduling. Industrial & Engineering Chemistry Research, 45, 8253-8269, 2006.
Kim, J. & Moon, I. Synthesis of safe operating procedure for multi-purpose batch processes using SMV. Computers & Chemical Engineering, 24, 385-392, 2000.
Kondili, E., Pantelides, C. C. & Sargent, R. W. H. A general algorithm for short-term scheduling of batch operations - I. MILP formulation. Computers & Chemical Engineering, 17, 211-227, 1993.
Lai, J. H. & Chang, C. T. Optimal design of batch azeotropic distillation processes. Master Thesis, National Cheng Kung University, 2005.
Lai, J. W., Chang, C. T., & Huang, S. H. Petri-Net based integer programs for synthesizing optimal batch operation procedures. Industrial & Engineering Chemistry Research, 46, 2797-2813, 2007.
Lin, X. & Floudas, C. A. Design, synthesis, and scheduling of multipurpose batch plants via an effective continuous-time formulation. Computers & Chemical Engineering, 25, 665-674, 2001.
Maravelias, C. T. & Grossmann, I. E. A new general continuous-time state task network formulation for the short term scheduling of multi-purpose batch plants. Industrial & Engineering Chemistry Research, 42, 3056-3074, 2003.
Pantelides, C.C. Unified frameworks for the optimal process planning and scheduling. Proceedings on the Second Conference on Foundations of Computer Aided Operations (Eds. Rippin, D. W. T. & Hale, J.), 253-274, 1994.
Papageorgaki, S. & Reklaitis, G. V. Optimal design of multipurpose batch plants - I. Problem formulation. Industrial & Engineering Chemistry Research, 29, 2054-2061, 1990.
Papageorgaki, S. & Reklaitis, G. V. Optimal design of multipurpose batch plants - II. A decomposition solution strategy. Industrial & Engineering Chemistry Research, 29, 2062-2073, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - I. Heterogeneous phase diagrams. Chemical Engineering Science, 45, 1823-1836, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - II. Residue curve maps. Chemical Engineering Science, 45, 1837-1843, 1990.
Pham, H. N. & Doherty, M. F. Design and synthesis of heterogeneous azeotropic distillations - III. Column sequence. Chemical Engineering Science, 45, 1845-1854, 1990.
Raman, R. & Grossmann, I. E. Relation between MILP modeling and logical inference for chemical process synthesis. Computers & Chemical Engineering, 15, 73-84, 1991.
Raman, R. & Grossmann, I. E. Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis. Computers & Chemical Engineering, 13, 909-927, 1993.
Safrit, T. B. & Westerberg, A. W. Algorithm for generating the distillation regions for azeotropic multicomponent mixtures. Industrial & Engineering Chemistry Research, 36, 1827-1840, 1997.
Safrit, T. B. & Westerberg, A. W. Synthesis of Azeotropic Batch Distillation Separation Systems. Industrial & Engineering Chemistry Research, 36, 1841-1854, 1997.
Sahinidis, N. V. & Tawarmalani, M. GAMS/BARON 5.0: Global optimization of mixed-integer nonlinear programs. GAMS Corporation, Inc., 2003.
Schilling, G. & Pantelides, C. C. A simple continuous-time process scheduling formulation and a novel solution algorithm. Computers & Chemical Engineering, 20, Suppl., S1221-S1226, 1996.
Schilling, G. & Pantelides, C. C. Optimal periodic scheduling of multipurpose plants. Computers & Chemical Engineering, 23, 635-655, 1999.
Shah, N., Pantelides, C. C., & Sargent, R.W.H. A general algorithm for short-term scheduling of batch operations - II. Computational issues. Computers & Chemical Engineering, 17, 229-244, 1993.
Shah, N., Pantelides, C. C., & Sargent, R. W. H. Optimal periodic scheduling of multipurpose batch plants. Annals of Operations Research, 42, 193-228, 1993.
Shaik, M. A., Janak, S. L., & Floudas, C. A. Continuous-time models for short-term scheduling of multipurpose batch plants: A comparative study. Industrial & Engineering Chemistry Research, 45, 6190-6209, 2006.
Stichlmair, J. G., Fair, J. R., & Bravo, J. L. Separation of azeotropic mixtures via enhanced distillation. Chemical Engineering Progress, 85, 63–69, 1989.
Stichlmair, J. G. & Herguijuela, J. R. Separation regions and processes of zeotropic and azeotropic ternary distillation. AIChE Journal, 38, 1523-1535, 1992.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 1. Assessing product feasibility. Chemical Engineering Science, 56, 4369-4391, 2001.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 2. Column design. Chemical Engineering Science, 56, 4393-4416, 2001.
Thong, D. Y. -C. & Jobson, M. Multicomponent homogeneous azeotropic distillation 3. Column sequence synthesis. Chemical Engineering Science, 56, 4417-4432, 2001.
Thong, D. Y. -C., Liu G., Jobson, M., & Smith, R. Synthesis of distillation sequences for separating multicomponent azeotropic mixtures. Chemical Engineering & Processing, 43, 239-250, 2004.
Volin, Y. M. & Ostrovskii, G. M. Flexibility analysis of complex technical system under uncertainty. Automation & Remote Control, 63, 7, 1123-1136, 2002.
Wahnschafft, O. M., Koehler, J. W., Blass, E., & Westerberg, A. W. The product composition regions of single-feed azeotropic distillation columns. Industrial & Engineering Chemistry Research, 31, 2345–2362, 1992.
Wahnscafft, O. M. & Westerberg, A. W. The product composition regions of azeotropic distillation columns. 2. Separability in two-feed columns and entrainer selection. Industrial & Engineering Chemistry Research 32, 1108–1120, 1993.
Wang, Y. F. & Chang, C. T. A Petri-Net-based deductive reasoning strategy for fault identification in batch processes. Industrial & Engineering Chemistry Research, 43, 2704-2720, 2004.
Wang, Y. F., Chou, H. H., & Chang, C. T. Generation of batch operating procedures for multiple material-transfer tasks with Petri-Net. Computers & Chemical Engineering, 29, 1822-1836, 2005.
Watson, S., Joulia. X., Macchietto, S., Le Lann, J. -M., Vayrette, G., & Letourneau, J. -J. Azeotropic batch distillation: New problems and some solutions. Computers & Chemical Engineering, 19, Suppl., S589-596, 1995.
Westhaus, I. U. & Sass, R. From raw physical data to reliable thermodynamic model parameters through DECHEMA Data Preparation Package. Fluid Phase Equilibria, 222-223, 49-54, 2004.
Wu, D. & Ierapetritou, M. Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation. Computers & Chemical Engineering, 28, 2271-2286, 2004.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - A general formulation and some solution approaches for the solution. Computers & Chemical Engineering, 20, 897-904, 1996.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - Extensions and improvements. Computers & Chemical Engineering, 20, Suppl., S1287-SI293, 1996.
Zhang, X. & Sargent, R. W. H. The optimal operation of mixed production facilities - Extensions and improvements. Computers & Chemical Engineering, 22, 1287-1295, 1998.