| 研究生: |
李育丞 Li, Yu-Cheng |
|---|---|
| 論文名稱: |
以六光子量子網路實驗上實現有效率的量子同調傳遞偵測 Efficient experimental detection of quantum coherence transmission in a six-photon quantum network. |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 量子網路 、量子同調偵測 、六光子糾纏製造實驗 |
| 外文關鍵詞: | Quantum network, Quantum coherence detection, Six-photon entanglement generation experiment |
| 相關次數: | 點閱:38 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子網路是量子通訊之基礎,通過量子網路分發量子位元,可以傳遞量子狀態,利用其超越古典的特殊性,實現各種量子通訊上的應用,達成古典通訊所不能及之速度與安全性。然而對於網路的使用者,不一定擁有充份的量子操作能力測試量子網路的可靠性,尤其現今對於量子網路可靠性的測試,大多數依賴對系統進行保真度的量測,甚至需要進行量子斷層掃描來進行完整的分析,對於量子網路,尤其是當系統越大時,進行測試的所需資源及量測時間就會越多。因此我們從使用者的角度出發,發展了可以有效率地偵測量子同調傳遞之理論與實驗技術。透過作為量子網路重要指標之量子同調特性,可以在無需得知整個量子網路中的所有量子特性之情況下,忠實地完成量子網路可靠性之認證於所提出的方案中,我們可以透過最低限度的一組量測基底,以及完成一個簡單之量子同調操作,即可驗證量子網路中量子同調之傳遞。除此之外,我們也在實驗上成功透過光纖傳輸光子的方式實現了六光子糾纏,也發現利用符合計數模組可以加速尋找多光子糾纏的進程,這些成果奠定了日後在實驗上可以實現更複雜方案的基礎。在這篇文章我們也通過在六光子糾纏實驗下模擬量子網路,第一次在實驗上成功地實現本篇介紹的方案,展示其在實驗上的可行性。
Quantum networking serves as the foundation for quantum communication, enabling the distribution of quantum bits (qubits) and the transmission of quantum states. Leveraging its surpassing features compared to classical communication, various applications in quantum communication can be achieved, providing speeds and security beyond what classical communication can attain. However, is not always guaranteed that the quantum network users have sufficient quantum operational capabilities to test the reliability of quantum networks. Particularly, current methods for testing quantum network reliability often rely on measuring the fidelity of the system, and in some cases, even necessitate performing quantum tomography for a comprehensive analysis. As the quantum system increases, the resources and measurement time required for verification also escalate.
Therefore, from the perspective of users, we have developed a theoretical and experimental technique that efficiently detects quantum coherence transmission. By utilizing quantum coherence as an essential indicator for quantum networks, we can faithfully verify the reliability of quantum networks without the need to know all the quantum properties throughout the entire network. In our proposed scheme, a minimal set of measurement bases and a simple quantum coherence manipulation are sufficient to authenticate quantum coherence transmission within the network.
Additionally, in our experiments, we have successfully achieved six-photon entanglement through optical fiber transmission. We also discovered that using coincidence counting modules can expedite the process of finding multi-photon entanglement. These achievements lay the groundwork for implementing more complex schemes in future experiments.
In this article, we also simulate quantum networks based on the six-photon entanglement experiment, demonstrating the feasibility of the proposed scheme in practical experiments for the first time.
[1] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke,E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012.
[2] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[3] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Theoretical framework for quantum networks,” Phys. Rev. A, vol. 80, p. 022339, 2009.
[4] B. Yurke and J. S. Denker, “Quantum network theory,” Physical review A, vol. 29, no. 3, p. 1419, 1984.
[5] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” American Journal of Physics, vol. 58, no. 12, pp. 1131–1143, 1990.
[6] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
[7] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, pp. 165–171, 2007.
[8] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
[9] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nature Photonics, vol. 8, no. 8, pp. 595–604, 2014.
[10] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[11] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” science, vol. 282, no. 5389, pp. 706–709, 1998.
[12] A. Zeilinger, “Quantum teleportation,” Scientific American, vol. 282, no. 4, pp. 50–59, 2000.
[13] C. Elliott, “Building the quantum network,” New Journal of Physics, vol. 4, no. 1, p. 46, 2002.
[14] W. McCutcheon, A. Pappa, B. A. Bell, A. Mcmillan, A. Chailloux, T. Lawson, M. Mafu, D. Markham, E. Diamanti, I. Kerenidis, et al., “Experimental verification of multipartite entanglement in quantum networks,” Nature communications, vol. 7, no. 1, p. 13251, 2016.
[15] M. Amoretti and S. Carretta, “Entanglement verification in quantum networks with tampered nodes,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 598–604, 2020.
[16] J. Knörzer, D. Malz, and J. I. Cirac, “Cross-platform verification in quantum networks,” Physical Review A, vol. 107, no. 6, p. 062424, 2023.
[17] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012.
[18] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé,
A. Akin, S. Storz, J.-C. Besse, et al., “Deterministic quantum state transfer and remote entanglement using microwave photons,” Nature, vol. 558, no. 7709, pp. 264–267, 2018.
[19] J. Knörzer, D. Malz, and J. I. Cirac, “Cross-platform verification in quantum networks,” Phys. Rev. A, vol. 107, p. 062424, 2023.
[20] A. Miranowicz, M. Bartkowiak, X. Wang, Y.-x. Liu, and F. Nori, “Testing nonclassicality in multimode fields: A unified derivation of classical inequalities,” Phys. Rev. A, vol. 82, p. 013824, 2010.
[21] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, “Witnessing quantum coherence: from solid-state to biological systems,” Scientific reports, vol. 2, no. 1, p. 885, 2012.
[22] A. J. Leggett and A. Garg, “Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?,” Phys. Rev. Lett., vol. 54, pp. 857–860, 1985.
[23] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific reports, vol. 9, no. 1, p. 20316, 2019.
[24] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Physical Review A, vol. 69, no. 6, p. 062311, 2004.
[25] M. O. Scully and M. S. Zubairy, “Quantum optics,” 1999.
[26] T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinearoptic devices,” Laser & Photonics Reviews, vol. 3, no. 4, pp. 370–393, 2009.
[27] Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon greenberger–horne–zeilinger state,” Nature communications, vol. 2, no. 1, p. 546, 2011.
[28] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan, “Experimental violation of local realism by four-photon greenberger-horne-zeilinger entanglement,” Physical review letters, vol. 91, no. 18, p. 180401, 2003.
[29] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, no. 5, p. 2847, 1989.
[30] U. Leonhardt, Measuring the quantum state of light, vol. 22. Cambridge university press, 1997.
[31] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009.
[32] D. Cavalcanti, P. Skrzypczyk, G. Aguilar, R. V. Nery, P. S. Ribeiro, and S. Walborn, “Detection of entanglement in asymmetric quantum networks and multipartite quantum steering,” Nature communications, vol. 6, no. 1, p. 7941, 2015.
[33] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M. Li, and J.-W. Pan, “Counting classical nodes in quantum networks,” Physical review letters, vol. 124, no. 18, p. 180503, 2020.
[34] K. Wei-Ting, “Experimental verification of genuine four-photon quantum steering using entanglement witness observables,” Master’s thesis, 2022.
[35] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature physics, vol. 3, no. 2, pp. 91–95, 2007.
[36] Y. Aharonov and L. Vaidman, “Properties of a quantum system during the time interval between two measurements,” Phys. Rev. A, vol. 41, pp. 11–20, 1990.
[37] G. C. Knee, S. Simmons, E. M. Gauger, J. J. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, K. M. Itoh, M. L. Thewalt, et al., “Violation of a leggett–garg inequality with ideal non-invasive measurements,” Nature communications, vol. 3, no. 1, p. 606, 2012.
[38] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
[39] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), pp. 284–289, IEEE, 2004.
[40] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3—a matlab software package for semidefinite programming, version 1.3,” Optimization methods and software, vol. 11, no. 1-4, pp. 545–581, 1999.
[41] E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” in High performance optimization, pp. 197–232, Springer, 2000.
[42] S. Sheng-Yan, “Experimental capability of photon interference for generating sixphoton entanglement.,” Master’s thesis, 2023.
[43] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
[44] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.
[45] Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003.
[46] J.-H. Hsieh, “Theory of quantifying quantum-mechanical process and its application,” Master’s thesis, 2017.
[47] Excelitas, “SPCM-AQRH https://www.excelitas.com/product/spcm-aqrh,”
[48] U. Q. Devices, “Logic-16 https://uqdevices.com/products/,”
[49] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature photonics, vol. 3, no. 12, pp. 696–705, 2009.
[50] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” American Journal of Physics, vol. 58, no. 12, pp. 1131–1143, 1990.
[51] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
[52] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.
[53] Y.-B. Li, Q.-Y. Wen, Z.-C. Li, S.-J. Qin, and Y.-T. Yang, “Cheat sensitive quantum bit commitment via pre-and post-selected quantum states,” Quantum information processing, vol. 13, pp. 141–149, 2014.
[54] O. Gühne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan, “Toolbox for entanglement detection and fidelity estimation,” Physical Review A, vol. 76, no. 3, p. 030305, 2007.
[55] D.-G. Im, Y. Kim, and Y.-H. Kim, “Dispersion cancellation in a quantum interferometer with independent single photons,” Optics Express, vol. 29, no. 2, pp. 2348–2363, 2021.
[56] G. Tóth and O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Physical review letters, vol. 94, no. 6, p. 060501, 2005.
[57] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, no. 7, p. 077902, 2001.
[58] Newport, “NPX400SG https://www.newport.com/p/NPX400SG,”
[59] S.-H. Chen, M.-L. Ng, and C.-M. Li, “Quantifying entanglement preservability of experimental processes,” Physical Review A, vol. 104, no. 3, p. 032403, 2021.
[60] B. Bell, A. S. Clark, M. S. Tame, M. Halder, J. Fulconis, W. J. Wadsworth, and J. G. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New Journal of Physics, vol. 14, no. 2, p. 023021, 2012.
[61] Y.-S. Liu, “Verification of necessary and sufficient quantum beneficial condition of quantum remote state preparation in entangled photon sagnac interferometer,” Master’s thesis, 2023.
[62] P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, et al., “Chip-based quantum key distribution,” Nature communications, vol. 8, no. 1, p. 13984, 2017.
[63] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, et al., “Satellite-based entanglement distribution over 1200 kilometers,” Science, vol. 356, no. 6343, pp. 1140–1144, 2017.