| 研究生: |
傅道鴻 Fu, Dao-Hong |
|---|---|
| 論文名稱: |
銀奈米立方體於不同金屬鏡像之表面增強拉曼光譜研究 The application of silver nanocubes on the mirror of different metals in Surface-Enhanced Raman Scattering |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 表面增強拉曼散射 、銀奈米立方體 、侷域性表面電漿共振 |
| 外文關鍵詞: | SERS, Silver nanocube, LSPR |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究包含兩個部分,第一部分是銀奈米立方體於不同金屬鏡像上之特性研究,透過研究1mm金屬塊材與蒸鍍80nm的金屬薄膜發現鋁塊材基板與鋁薄膜基板所得之Raman增顯因子相差1000倍。藉由紫外光/可見光光譜及XPS元素分析得知,因氧化鋁生成於鋁金屬表面使得表面電漿共振的強度隨著鋁鏡像基板之厚度上升而增加;而因為氧化銀生成於銀鏡像基板表面所以造成其SERS增顯因子小於金鏡像基板。最後利用自組裝單分子層技術將1,2-ethanedithiol創造銀奈米立方體與金屬鏡像之間隔層,由拉曼光譜的結果顯示間隔層可以提升金屬鏡像基板之增顯因子。
論文的第二部分是用模擬的方式來了解銀奈米立方體於金屬鏡像結構的增顯機制。模擬銀奈米立方體於玻璃基板與金屬基板之結果顯示在金屬鏡像基板確實可以比玻璃基板引發更強大的感應電場,且電場能量強度正比於金屬介電常數。而當銀奈米立方體與金屬基板之間有一層介電物質作為間隔層確實可以在間隔層區域產生強大的電場能量,最後模擬銀奈米立方體之間的距離,探討利用自組裝單分子層技術所得之SERS基板,主要的增顯機制是來自銀奈米立方體與金屬鏡像因表面電漿耦合所產生的感應電場。
In this thesis, we study on the application of silver nanocubes on the mirror of different metals in Surface-Enhanced Raman Scattering (SERS). The contents include two parts:
In the first section, the characteristics of the substrates which were fabricated by deposited silver nanocubes on the mirror of different metals were investigated. The Raman spectra showed that the enhancement factor of bulk aluminum substrate is larger than the enhancement factor of aluminum thin film substrate in three orders. The UV/vis spectra showed that the surface plasmon resonance between silver nanocube and metal substrate varied with the thickness of metal substrate. In addition, the X-ray photoelectron spectroscope (XPS) showed that the metal oxide was generated on the metal surface. It was found that aluminum oxide affects the surface plasmon resonance between silver nanocube and aluminum substrate. Furthermore, the silver oxide reduced the SERS performance, therefore gold substrate has higher enhancement factor than silver substrate. Since hot spots on a large scale can be generated by assembling silver nanocubes on the metal surface. Silver nanocubes are homogeneously assembled on the metal surface to lead strong optical field enhancement by using 1,2-ethylanedithiol as intermedium to link the interface of two metal surfaces to become hot spots.
In the second section, finite difference time domain method (FDTD) was used to simulate the surface plasmon resonance of silver nanocubes on different metallic mirrors. The result showed that silver nanocubes on metal substrate create larger hot spot area than glass substrate and the electron field energy is proportional to the dielectric constant of metal. The strong surface plasmon resonance can be created via using self-assembled monolayer to reduce the distance between silver nanocubes. Besides, the most important factor for SERS substrate is the distance between the silver nanocubes and the metal substrates.
[1] C. V. Raman,"Nature 121, 501
[2] 林珮瑋,銀奈米線構成之大範圍網狀結構與其表面增強拉曼散射光譜之研究,國立成功大學化學工程學系,研究所碩士論文,台灣, (2012)
[3] M. Fleischmann, P. J. Hendra and A. J. McQuillan,"Raman spectra of pyridine adsorbed at a silver electrode", Chemical Physics Letters 26, 163 (1974)
[4] M. Moskovits,"Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals", The Journal of Chemical Physics 69, 4159 (1978)
[5] A. Otto,"Surface enhanced Raman scattering (SERS), what do we know?", Applications of Surface Science 6, 309 (1980)
[6] M. Kerker, D. S. Wang and H. Chew,"Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles", Appl. Opt. 19, 3373 (1980)
[7] D. S. Wang and M. Kerker,"Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids", Physical Review B 24, 1777 (1981)
[8] H. Xu, J. Aizpurua, M. Käll and P. Apell,"Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering", Physical Review E 62, 4318 (2000)
[9] 吳建成,金奈米粒子之綠色合成及磁性複合奈米粒子之製備,國立成功大學化學工程學系,研究所博士論文,台灣, (2010)
[10] 莊萬發,超微粒子理論應用,復漢出版社,台灣,(1995)
[11] 蘇品書,超微粒子材料技術,復漢出版社,台灣,(1989)
[12] L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou and G. C. Schatz,"Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions", The Journal of Physical Chemistry B 109, 1079 (2004)
[13] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz,"Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Letters 3, 1087 (2003)
[14] V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson and V. M. Shalaev,"Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules", Journal of Raman Spectroscopy 36, 648 (2005)
[15] S. R. Emory, W. E. Haskins and S. Nie,"Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles", Journal of the American Chemical Society 120, 8009 (1998)
[16] F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal and L. Martín-Moreno,"Efficiency and finite size effects in enhanced transmission through subwavelength apertures", Opt. Express 16, 9571 (2008)
[17] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang and Y. L. Wang,"Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps", Advanced Materials 18, 491 (2006)
[18] S. J. Lee, A. R. Morrill and M. Moskovits,"Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy", Journal of the American Chemical Society 128, 2200 (2006)
[19] A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia and P. Yang,"Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy", Nano Letters 3, 1229 (2003)
[20] Y. J. Liu, H. Y. Chu and Y. P. Zhao,"Silver Nanorod Array Substrates Fabricated by Oblique Angle Deposition: Morphological, Optical, and SERS Characterizations", The Journal of Physical Chemistry C 114, 8176 (2010)
[21] Y. Sun and G. P. Wiederrecht,"Surfactantless Synthesis of Silver Nanoplates and Their Application in SERS", Small 3, 1964 (2007)
[22] H. Lin, J. Mock, D. Smith, T. Gao and M. J. Sailor,"Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon", The Journal of Physical Chemistry B 108, 11654 (2004)
[23] X. Wen, Y.-T. Xie, W. C. Mak, K. Y. Cheung, X.-Y. Li, R. Renneberg and S. Yang,"Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications", Langmuir 22, 4836 (2006)
[24] W. Song, Y. Cheng, H. Jia, W. Xu and B. Zhao,"Surface enhanced Raman scattering based on silver dendrites substrate", Journal of Colloid and Interface Science 298, 765 (2006)
[25] A. Gutés, C. Carraro and R. Maboudian,"Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil As an Effective SERS Substrate", Journal of the American Chemical Society 132, 1476 (2010)
[26] M. H. Rashid and T. K. Mandal,"Synthesis and Catalytic Application of Nanostructured Silver Dendrites", The Journal of Physical Chemistry C 111, 16750 (2007)
[27] M. Rycenga, X. Xia, C. H. Moran, F. Zhou, D. Qin, Z.-Y. Li and Y. Xia,"Generation of Hot Spots with Silver Nanocubes for Single-Molecule Detection by Surface-Enhanced Raman Scattering", Angewandte Chemie International Edition 50, 5473 (2011)
[28] T. Qiu, X. L. Wu, J. C. Shen and P. K. Chu,"Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy", Applied Physics Letters 89, 131914 (2006)
[29] G. Duan, W. Cai, Y. Luo, Z. Li and Y. Li,"Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect", Applied Physics Letters 89, 211905 (2006)
[30] Y.-C. Liu, C.-C. Yu and S.-F. Sheu,"Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates", Journal of Materials Chemistry 16, 3546 (2006)
[31] S. Efrima and B. V. Bronk,"Silver Colloids Impregnating or Coating Bacteria", The Journal of Physical Chemistry B 102, 5947 (1998)
[32] X. Zhao and Y. Fang,"Raman experimental and DFT theoretical studies on the adsorption behavior of benzoic acid on silver nanoparticles", Journal of Molecular Structure 789, 157 (2006)
[33] W.-q. Ma, Y. Fang, G.-l. Hao and W.-g. Wang,"Adsorption Behaviors of 4-Mercaptobenzoic Acid on Silver and Gold Films", Chinese Journal of Chemical Physics 23, 659 (2010)
[34] Y. Badr and M. A. Mahmoud,"Size-dependent surface-enhanced Raman scattering of sodium benzoate on Silver nanoparticles", Journal of Molecular Structure 749, 187 (2005)
[35] M. I. Stockman, L. N. Pandey, L. S. Muratov and T. F. George,"Giant fluctuations of local optical fields in fractal clusters", Physical Review Letters 72, 2486 (1994)
[36] D. Bergman and M. Stockman,"Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems", Physical Review Letters 90, (2003)
[37] G. S. Adkins, P. M. Mitrikov and R. N. Fell,"Two-Loop Renormalization in Coulomb Gauge QED", Physical Review Letters 78, 9 (1997)
[38] J. P. Schmidt, S. E. Cross and S. K. Buratto,"Surface-enhanced Raman scattering from ordered Ag nanocluster arrays", The Journal of Chemical Physics 121, 10657 (2004)
[39] X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart and R. P. van Duyne,"untitled", Nanobiotechnology, IEE Proceedings - 152, 195 (2005)
[40] J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas,"Controlling the surface enhanced Raman effect via the nanoshell geometry", Applied Physics Letters 82, 257 (2003)
[41] 邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊,台灣,(2006)
[42] M. Rycenga, P. H. C. Camargo, W. Li, C. H. Moran and Y. Xia,"Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time", The Journal of Physical Chemistry Letters 1, 696 (2010)
[43] P. K. Aravind and H. Metiu,"Use of a perfectly conducting sphere to excite the plasmon of a flat surface. 1. Calculation of the local field with applications to surface-enhanced spectroscopy", The Journal of Physical Chemistry 86, 5076 (1982)
[44] J. K. Daniels and G. Chumanov,"Nanoparticle−Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering", The Journal of Physical Chemistry B 109, 17936 (2005)
[45] R. T. Hill, J. J. Mock, Y. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti and D. R. Smith,"Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light", Nano Letters 10, 4150 (2010)
[46] S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu and M. Moskovits,"Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide", Nano Letters 12, 2088 (2012)
[47] 鄭瑋銘,均勻與非均勻網格於轉換光學之光電模擬研究,國立成功大學太空天文與電漿所,研究所碩士論文,台灣, (2011)
[48] Y. Kane,"Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", Antennas and Propagation, IEEE Transactions on 14, 302 (1966)
[49] 葛德彪,電磁波有限時域差分法(第二版),西安電子科技大學出版社,西安,(2005)
[50] A.Taflove,Computational Electrodynamics:The Finite-Difference Time-Domain Method,Artech House,(2005)
[51] J.-P. Berenger,"A perfectly matched layer for the absorption of electromagnetic waves", Journal of Computational Physics 114, 185 (1994)
[52] 林信宏,水相界面活性劑系統製備貴金屬奈米粒子之研究,國立成功大學化學工程學系,研究所碩士論文,台灣, (2002)
[53] K.-C. H. Kan-Sen Chou, and Hsien-Hsuen Lee,"Nanotechnology 16, 779 (2005)
[54] C. Lofton and W. Sigmund,"Mechanisms Controlling Crystal Habits of Gold and Silver Colloids", Advanced Functional Materials 15, 1197 (2005)
[55] B. Wiley, Y. Sun and Y. Xia,"Synthesis of Silver Nanostructures with Controlled Shapes and Properties", Accounts of Chemical Research 40, 1067 (2007)
[56] Y. Sun and Y. Xia,"Shape-Controlled Synthesis of Gold and Silver Nanoparticles", Science 298, 2176 (2002)
[57] S. E. Skrabalak, L. Au, X. Li and Y. Xia,"Facile synthesis of Ag nanocubes and Au nanocages", Nature Protocols 2, 2182 (2007)
[58] A. D. Rakic, A. B. Djuri?ic, J. M. Elazar and M. L. Majewski,"Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices", Appl. Opt. 37, 5271 (1998)
[59] Z. Y. Chen, D. Liang, G. Ma, G. S. Frankel, H. C. Allen and R. G. Kelly,"Influence of UV irradiation and ozone on atmospheric corrosion of bare silver", Corrosion Engineering, Science and Technology 45, 169 (2010)
[60] H. T. Miyazaki and Y. Kurokawa,"Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity", Physical Review Letters 96, 097401 (2006)