簡易檢索 / 詳目顯示

研究生: 吳紹銘
Wu, Shao-Ming
論文名稱: 藍光與白光有機電激發光元件:以高分子摻雜系統當發光層之研究
Studies of blue and white organic electroluminescent devices using the polymer/dopant systems as light-emitting layer
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 86
中文關鍵詞: 高分子摻雜系統藍光與白光有機發光二極體
外文關鍵詞: organic light-emitting diode, blue and white light, polymer-dopant system
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以高分子與小分子混合的系統,採取旋轉塗佈的加工方式,製作藍光及白光有機發光二極體。小分子材料使用:藍光4,4’-bis(2,2-diphenylvinyl)-biphenyl (DPVBi)當發光層材料,tris(8-hydroxyquinoline)aluminum (Alq3)當電子傳輸層,2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)當電洞阻擋層。高分子材料使用:poly(9-vinylcarbazole) (PVK)當基體材料,polyfluorene綠光(PF-G)與polyfluorene紅光(PF-R)當發光層材料,poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS)當電洞注入層;分別以Indium-tin oxide (ITO)與Ca/Al金屬當電洞與電子注入電極,製作元件結構為ITO/PEDOT:PSS/發光層/BCP/Alq3/Ca/Al的有機發光二極體,利用改變發光層材料與混合質量比例,分別製作藍光及白光元件。
      第一部份,首先利用PVK與DPVBi依照質量比例混合當發光層製作藍光元件,使用吸收光譜、光激發光光譜、光致激發光譜與電激發光譜研究相關的光物理機制與能量轉移現象,進而探討元件的光電特性。本研究成功地製作出元件結構為ITO/PEDOT:PSS/PVK:DPVBi/BCP/Alq3/Ca/Al的藍光有機發光二極體,在9 V的驅動電壓下,亮度為1578 cd/m2,在153 mA/cm2的驅動電流下,發光效率為1.02 cd/A,Commission Internationale d’Eclairage (CIE)座標為(0.159 , 0.210)。此外,本研究發現PVK與DPVBi之間會有能量轉移現象,PVK會將能量轉移給DPVBi,增加DPVBi發光效率,且DPVBi有三個主要的振動放射峰。
      第二部份,利用PVK、DPVBi、PF-G及PF-R依照質量比例混合當發光層製作白光元件,使用光激發光光譜、光致激發光譜與電激發光譜研究相關的光物理機制與能量轉移現象,進而探討元件的光電特性。本研究成功地製作出元件結構為ITO/PEDOT:PSS/PVK:DPVBi:PF-G:PF-R/BCP/Alq3/Ca/Al的白光有機發光二極體,在9 V的驅動電壓下,亮度為1390 cd/m2,在11.9 mA/cm2的驅動電流下,發光效率為0.347 cd/A,CIE座標為(0.302 , 0.335)。此外,本研究發現白光元件的光激發光光譜與電激發光光譜差異甚大,歸因於光激發光過程與電激發光過程中,發光材料間的能量轉移效率與作用力範圍不同。

     In this study, blue and white organic electroluminescent diodes using polymer-dopant systems as emitting layer were fabricated. The emitting layer was produced via spin-coating process. Small-molecule materials that were used included: blue-emitting 4,4’-bis(2,2-diphenylvinyl)biphenyl (DPVBi) as a light-emitting layer material, tris(8-hydroxyquinoline)aluminum (Alq3) as an electron transport layer, and 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a hole blocking layer. In addition to the small-molecule materials, the following polymer materials were used: poly(9-vinylcarbazole) (PVK) as a matrix material, polyfluorene green-emitting (PF-G) and polyfluorene red-emitting (PF-R) as light-emitting layer materials, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a hole injection layer. Indium-tin oxide (ITO) and Ca/Al were used as hole and electron injection electrodes accordingly. The device structure was comprised of ITO/PEDOT:PSS/light-emitting layer/BCP/Alq3/Ca/Al. Blue and white light-emitting devices were fabricated by changing light-emitting layer materials and altering proportion of their blending mass.
     In the first part, the blue light-emitting device was fabricated by blending PVK and DPVBi according to proportion of mass as specified for a light-emitting layer. Process relevant photophysical mechanisms and energy transfer phenomena were studied using absorption spectra, photoluminescence (PL) spectra, photoluminescent excitation (PLE) spectra, and electroluminescence (EL) spectra. Next, electro-optical characteristics of the device were studied. We have successfully fabricated the blue organic electroluminescent diode with the following structure: ITO/PEDOT:PSS/PVK:DPVBi/BCP/Alq3/Ca/Al. Fabricated blue organic electroluminescent diode has a brightness of 1578 cd/m2 at voltage of 9 V, luminance efficiency of 1.02 cd/A with applied current of 153 mA/cm2, and Commission Internationale d’Eclairage (CIE) coordinates (0.159 , 0.210). Moreover, we have learned that there was energy transfer phenomenon between PVK and DPVBi. PVK would transfer energy to DPVBi to enhance luminance efficiency of DPVBi, and DPVBi could exhibit three main vibronic peaks.
     In part two, the white light-emitting device was fabricated by blending PVK, DPVBi, PF-G, and PF-R in accordance with the proportion of mass of a light-emitting layer. Relevant photophysical mechanisms and energy transfer phenomena were studied by PL spectra, PLE spectra, and EL spectra. Additionally, electro-optical characteristics of the device were studied. We have successfully fabricated the white organic electroluminescent diode with the following structure: ITO/PEDOT:PSS/PVK:DPVBi:PF-G:PF-R/BCP/Alq3/Ca/Al. The white organic electroluminescent diode has a brightness of 1390 cd/m2 at voltage of 9 V, luminance efficiency of 0.347 cd/A at applied current of 11.9 mA/cm2, and CIE coordinates (0.302 , 0.335). Furthermore, we found that PL spectra and EL spectra of the white light-emitting device were very different because there may exist extraordinary energy transfer between used light-emitting materials.

    摘要..................................................................................................................I Abstract...........................................................................................................III 誌謝.................................................................................................................V 目錄................................................................................................................VI 表目錄............................................................................................................IX 圖目錄.............................................................................................................X 第一章 序論................................................................................................- 1 - 第二章 相關基礎理論................................................................................- 5 -  2-1 元件物理...........................................................................................- 5 -   2-1-1 光激發光機制............................................................................- 5 -   2-1-2 電激發光機制............................................................................- 6 -  2-2 能量轉移機制...................................................................................- 7 -   2-2-1 Förster type能量轉移.................................................................- 7 -   2-2-2 Dexter type能量轉移.................................................................- 7 - 第三章 藍光元件......................................................................................- 14 -  3-1 前言.................................................................................................- 14 -  3-2 實驗.................................................................................................- 15 -   3-2-1 材料..........................................................................................- 15 -   3-2-2 發光層的試藥配製..................................................................- 15 -   3-2-3 有機薄膜製作..........................................................................- 16 -   3-2-4 元件製作..................................................................................- 16 -   3-2-5 分析儀器..................................................................................- 18 -  3-3 結果與討論.....................................................................................- 19 -   3-3-1 PVK、DPVBi及PVK:DPVBi的薄膜光學吸收特性................- 19 -   3-3-2 PVK、DPVBi及PVK:DPVBi的光激發光光譜........................- 20 -   3-3-3 PVK:DPVBi的光激發光光譜與電激發光光譜.......................- 21 -   3-3-4 多層結構藍光元件的電性......................................................- 22 -  3-4 結論.................................................................................................- 24 - 第四章 白光元件......................................................................................- 38 -  4-1 前言.................................................................................................- 38 -  4-2 實驗.................................................................................................- 39 -   4-2-1 材料..........................................................................................- 39 -   4-2-2 發光層的試藥配製..................................................................- 39 -   4-2-3 有機薄膜製作..........................................................................- 40 -   4-2-4 元件製作..................................................................................- 40 -   4-2-5 分析儀器..................................................................................- 42 -  4-3 結果與討論.....................................................................................- 43 -   4-3-1 發光材料的光激發光光譜......................................................- 43 -   4-3-2 不同質量比例之發光材料的電激發光光譜..........................- 43 -   4-3-3 白光元件的光激發光光譜與電激發光光譜..........................- 45 -   4-3-4 PVK、DPVBi、PF-G及PF-R間的能量轉移............................- 47 -   4-3-5 白光元件在光激發光與電激發光中的內部能量轉移..........- 48 -   4-3-6 多層結構白光元件的電性......................................................- 49 -  4-4 結論.................................................................................................- 50 - 第五章 總結..............................................................................................- 77 - 參考文獻...................................................................................................- 78 -

    [1] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic
     Crystals”, J. Chem. Phys., vol. 38, pp. 2042-2043, 1963.
    [2] C. W. Tang, and S. A. VanSlyke, “Organic Electroluminescent Diodes”,
     Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
     R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-Emitting Diodes Based
     on Conjugated Polymers”, Nature, vol. 347, pp. 539-541, 1990.
    [4] S. I. Tamura, Y. Kijima, N. Asai, M. Ichimura, and T. Ishibashi, “RGB
     materials for organic light-emitting displays”, Proc. of SPIE, vol. 3797,
     pp. 120-128, 1999.
    [5] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P.
     Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, “Multi-colour
     organic light-emitting displays by solution processing”, Nature, vol.
     421, pp. 829-833, 2003.
    [6] J. H. Choi, K. H. Kim, S. J. Choi, and H. H. Lee, “Whole device printing
     for full colour displays with organic light emitting diodes”,
     Nanotechnology, vol. 17, pp. 2246-2249, 2006.
    [7] B. Geffroy, P. L. Roy, and C. Prat, “Organic light-emitting diode (OLED)
     technology: materials, devices and display technologies”, Polym. Int.,
     vol. 55, pp. 572-582, 2006.
    [8] M. Suzuki, T. Hatakeyama, S. Tokito, and F. Sato, “High-Efficiency White
     Phosphorescent Polymer Light-Emitting Devices”, IEEE J. Sel. Top. Quantum
     Electron., vol. 10, pp. 115-120, 2004.
    [9] T. K. Hatwar, J. P. Spindler, M. L. Ricks, R. H. Young, Y. Hamada, N.
     Saito, K. Mameno, R. Nishikawa, H. Takahashi, and G. Rajeswaran, “High-
     efficiency white OLEDs based on small molecules”, Proc. of SPIE, vol.
     5214, pp. 233-240, 2004.
    [10] D. Buchhauser, M. Scheffel, W. Rogler, C. Tschamber, K. Heuser, A. Hunze,
      G. Gieres, D. Henseler, W. Jakowetz, K. Diekmann, A. Winnacker, H.
      Becker, A. Büsing, A. Falcou, L. Rau, S. Vögele, S. Göttling,
      “Characterization of white emitting copolymers for PLED-displays”, Proc.
      of SPIE, vol. 5519, pp. 70-81, 2004.
    [11] B. W. D’Andrade, and S. R. Forrest, “White Organic Light-Emitting
      Devices for Solid-State Lighting”, Adv. Mater., vol. 16, pp. 1585-1595,
      2004.
    [12] S. K. Lee, D. H. Hwang, B. J. Jung, N. S. Cho, J. Lee, J. D. Lee, and H.
      K. Shim, “The Fabrication and Characterization of Single-Component
      Polymeric White-Light-Emitting Diodes”, Adv. Funct. Mater., vol. 15, pp.
      1647-1655, 2005.
    [13] N. H. Lee, M. J. Lee, J. H. Song, C. Lee, D. H. Hwang, “Efficient white
      organic electroluminescent devices consisting of blue- and red-emitting
      layers”, Mater. Sci. Eng. C, vol. 24, pp. 233-235, 2004.
    [14] Y. S. Wu, S. W. Hwang, H. H. Chen, M. T. Lee, W. J. Shen, C. H. Chen,
      “Efficient white organic light emitting devices with dual emitting
      layers”, Thin Solid Films, vol. 488, pp. 265-269, 2005.
    [15] S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, “High-efficiency white
      phosphorescent organic light-emitting devices with greenish-blue and red-
      emitting layers”, Appl. Phys. Lett., vol. 83, pp. 2459-2461, 2003.
    [16] B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, “Controlling
      Exciton Diffusion in Multilayer White Phosphorescent Organic Light
      Emitting Devices”, Adv. Mater., vol. 14, pp. 147-151, 2002.
    [17] C. H. Kim, and J. Shinar, “Bright small molecular white organic light-
      emitting devices with two emission zones”, Appl. Phys. Lett., vol. 80,
      pp. 2201-2203, 2002.
    [18] C. H. Chuen, and Y. T. Tao, “Highly-bright white organic light-emitting
      diodes based on a single emission layer”, Appl. Phys. Lett., vol. 81,
      pp. 4499-4501, 2002.
    [19] B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, “Efficient Organic
      Electrophosphorescent White-Light-Emitting Device with a Triple Doped
      Emissive Layer”, Adv. Mater., vol. 16, pp. 624-628, 2004.
    [20] J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang, H. W. Lin,
      “Efficient, color-stable fluorescent white organic light-emitting diodes
      with an effective exciton-confining device architecture”, Org.
      Electron., vol. 7, pp. 8-15, 2006.
    [21] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, “Efficient,
      color-stable fluorescent white organic light-emitting diodes with single
      emission layer by vapor deposition from solvent premixed deposition
      source”, Appl. Phys. Lett., vol. 88, 193501, 2006.
    [22] J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, “Achieving High-Efficiency
      Polymer White-Light-Emitting Devices”, Adv. Mater., vol. 18, pp. 114-
      117, 2006.
    [23] J. H. Park, T. W. Lee, Y. C. Kim, O. O. Park, and J. K. Kim, “White
      polymer light-emitting devices from ternary-polymer blend with
      concentration gradient”, Chem. Phys. Lett., vol. 403, pp. 293-297, 2005.
    [24] J. I. Lee, H. Y. Chu, S. H. Kim, L. M. Do, T. Zyung, and D. H. Hwang,
      “White light emitting diodes using polymer blends”, Opt. Mater., vol.
      21, pp. 205-210, 2002.
    [25] D. H. Hwang, M. J. Park, and C. Lee, “White LEDs using conjugated
      polymer blends”, Synth. Met., vol. 152, pp. 205-208, 2005.
    [26] J. H. Kim, P. Herguth, M. S. Kang, A. K. Y. Jen, Y. H. Tseng, and C. F.
      Shu, “Bright white light electroluminescent devices based on a dye-
      dispersed polyfluorene derivative”, Appl. Phys. Lett., vol. 85, pp.
      1116-1118, 2004.
    [27] J. Kido, H. Shionoya, and K. Nagai, “Single-layer white light-emitting
      organic electroluminescent devices based on dye-dispersed poly(N-
      vinylcarbazole)”, Appl. Phys. Lett., vol. 67, pp. 2281-2283, 1995.
    [28] X. Gong, D. Moses, A. J. Heeger, and S. Xiao, “White Light
      Electrophosphorescence from Polyfluorene-Based Light-Emitting Diodes:
      Utilization of Fluorenone Defects”, J. Phys. Chem. B, vol. 108, pp.
      8601-8605, 2004.
    [29] T. H. Kim, H. K. Lee, O. O. Park, B. D. Chin, S. H. Lee, and J. K. Kim,
      “White-Light-Emitting Diodes Based on Iridium Complexes via Efficient
      Energy Transfer from a Conjugated Polymer”, Adv. Funct. Mater., vol. 16,
      pp. 611-617, 2006.
    [30] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet
      printing of doped polymers for organic light emitting devices”, Appl.
      Phys. Lett., vol. 72, pp. 519-521, 1998.
    [31] J. C. Carter, A. Wehrum, M. C. Dowling, M. C. Martinez, and N. D. B.
      Baynes, “Recent developments in materials and processes for ink jet
      printing high resolution polymer OLED displays”, Proc. of SPIE, vol.
      4800, pp. 34-46, 2003.
    [32] R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, and T. Miyabayashi,
      “White Organic Electroluminescent Devices Fabricated Using Ink-Jet
      Printing Method”, Jpn. J. Appl. Phys., vol. 43, pp. 7395-7398, 2004.
    [33] D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of Screen
      Printing in the Fabrication of Organic Light-Emitting Devices”, Adv.
      Mater., vol. 12, pp. 1249-1252, 2000.
    [34] K. Mori, T. Ning, M. Ichckawa, T. Koyama, and Y. Taniguchi, “Organic
      Light-Emitting Devices Patterned by Screen-Printing”, Jpn. J. Appl.
      Phys., vol. 39, pp. 942-944, 2000.
    [35] A. Kraft, A. C. Grimsdale, and A. B. Holmes, “Electroluminescent
      Conjugated Polymers-Seeing Polymers in a New Light”, Angew. Chem. Int.
      Ed., vol. 37, pp. 402-428, 1998.
    [36] M. Baldo, and M. Segal, “Phosphorescence as a probe of exciton formation
      and energy transfer in organic light emitting diodes”, Phys. Stat. Sol.
      (a), vol. 201, pp. 1205-1214, 2004.
    [37] L. Fenenko, Y. Nakanishi, S. Tokito, and A. Konno, “Electronic
      Characterization of New Bright-Blue-Light-Emitting Poly(9,9-
      dioctylfluorenyl-2,7-diyl)-End Capped With Polyhedral Oligomeric
      Silsesquioxanes”, Jpn. J. Appl. Phys., vol. 45, pp. 550-554, 2006.
    [38] T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M. Bastiaansen,
      and B. M. W. L. Voss, “Electron-Enhanced Hole Injection in Blue
      Polyfluorene-Based Polymer Light-Emitting Diodes”, Adv. Funct. Mater.,
      vol. 14, pp. 677-683, 2004.
    [39] M. C. Suh, B. D. Chin, M. H. Kim, T. M. Kang, and S. T. Lee, “Enhanced
      Luminance of Blue Light-Emitting Polymers by Blending with Hole-
      Transporting Materials”, Adv. Mater., vol. 15, pp. 1254-1258, 2003.
    [40] C. A. Breen, J. R. Tischler, V. Bulović, and T. M. Swager, “Highly
      Efficient Blue Electroluminescence from Poly(phenylene ethynylene) via
      Energy Transfer from a Hole-Transport Matrix”, Adv. Mater., vol. 17, pp.
      1981-1985, 2005.
    [41] J. H. Park, T. H. Kim, J. W. Yu, J. K. Kim, Y. C. Kim, and O. O. Park,
      “Enhanced color purity and stability from polymer-nanoporous silica
      nanocomposite blue light-emitting diodes”, Synth. Met., vol. 154, pp.
      145-148, 2005.
    [42] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato,
      “Confinement of triplet energy on phosphorescent molecules for highly-
      efficient organic blue-light-emitting devices”, Appl. Phys. Lett., vol.
      83, pp. 569-571, 2003.
    [43] S. W. Wen, M. T. Lee, and C. H. Chen, “Recent Development of Blue
      Fluorescent OLED Materials and Devices”, IEEE/OSA J. Display Technol.,
      vol. 1, pp. 90-99, 2005.
    [44] D. Gebeyehu, K. Walzer, G. He, M. Pfeiffer, K. Leo, J. Brandt, A.
      Gerhard, P. Stößel, and H. Vestweber, “Highly efficient deep-blue
      organic light-emitting diodes with doped transport layers”, Synth. Met.,
      vol. 148, pp. 205-211, 2005.
    [45] A. Fischer, S. Chénais, S. Forget, M. C. Castex, D. Adès, A. Siove, C.
      Denis, P. Maisse, and B. Geffroy, “Highly efficient multilayer organic
      pure blue light emitting diodes with substituted carbazoles compounds in
      the emitting layer”, J. Phys. D: Appl. Phys., vol. 39, pp. 917-922,
      2006.
    [46] R. J. Tseng, R. C. Chiechi, F. Wudl, and Y. Yang, “Highly efficient
      7,8,10-triphenylfluoranthene-doped blue organic light-emitting diodes for
      display application”, Appl. Phys. Lett., vol. 88, 093512, 2006.
    [47] Y. H. Niu, B. Chen, T. D. Kim, M. S. Liu, and A. K. Y. Jen, “Efficient
      and stable blue light-emitting diodes based on an anthracene derivative
      doped poly(N-vinylcarbazole)”, Appl. Phys. Lett., vol. 85, pp. 5433-
      5435, 2004.
    [48] A. Mikami, T. Koshiyama, and T. Tsubokawa, “High-Efficiency Color and
      White Organic Light-Emitting Devices Prepared on Flexible Plastic
      Substrates”, Jpn. J. Appl. Phys., vol. 44, pp. 608-612, 2005.
    [49] F. I. Wu, C. F. Shu, T. T. Wang, E. W. G. Diau, C. H. Chien, C. H. Chuen,
      and Y. T. Tao, “Bis(2,2-diphenylvinyl)spirobifluorene: An efficient and
      stable blue emitter for electroluminescence applications”, Synth. Met.,
      vol. 151, pp. 285-292, 2005.
    [50] N. Lemaître, J. Lavigne, P. Raimond, T. Maindron, C. Denis, P. Maisse,
      and B. Geffroy, “Blue and white organic light emitting diodes based on a
      doped DPVBi emitting layer”, Proc. of SPIE, vol. 5937, 593723, 2005.
    [51] C. C. Wu, J. C. Sturm, R. A. Register, J. Tian, E. P. Dana, and M. E.
      Thompson, “Efficient Organic Electroluminescent Devices Using Single-
      Layer Doped Polymer Thin Films with Bipolar Carrier Transport
      Abilities”, IEEE Trans. Electron Devices, vol. 44, pp. 1269-1281, 1997.
    [52] H. A. A. Attar, A. P. Monkman, M. Tavasli, S. Bettington, and M. R.
      Bryce, “White polymeric light-emitting diode based on a fluorene
      polymer/Ir complex blend system”, Appl. Phys. Lett., vol. 86, 121101,
      2005.

    下載圖示 校內:2007-07-11公開
    校外:2008-07-11公開
    QR CODE