| 研究生: |
陳冠廷 Chen, Guan-Ting |
|---|---|
| 論文名稱: |
多個異類異向性體之二維接觸分析 Two-dimensional contact analysis for multiple heterogeneous anisotropic solids |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 摩擦接觸問題 、異向性彈性 、黏彈性 、壓電 、磁電彈 、史磋公式 、彈性-黏彈性對應原理 、時間步進法 、邊界元素法 |
| 外文關鍵詞: | Frictional contact problem, anisotropic elasticity, viscoelasticity, piezoelectricity, magneto-electro-elasticity, Stroh formalism, Elastic-viscoelastic correspondence principle, Time-stepping method, Boundary element method |
| 相關次數: | 點閱:111 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討多個異質物體的接觸問題,根據材料性質分為異向性彈性/黏彈性/壓電/磁電彈材料,並通過整理基本方程式可以整理成相同的數學表示式,對於壓電與磁電彈材料,我們利用材料系數的矩陣維度擴張,將適用於異向性彈性問題的史磋公式,拓展至壓電與磁電彈問題,處理黏彈性問題時則是使用彈性-黏彈性對應原理與時間步進法,前者透過Laplace轉換,將基本方程式轉換成通用表達式,求解完後再透過Laplace反轉換得到黏彈解,後者則是將問題分成兩個部分,分別是初始時間與各個步進時間,兩個部分均可整理成通用表達式,藉由初始時間與各個步進時間的疊加得到黏彈解。通過這種通用的數學式,無論考慮哪種材料,都可以利用彈性系統求解。
將傳統用於求解具有指定曳引力和/或指定位移邊界條件的二維異向性彈性固體問題的邊界元素法擴展到多體摩擦接觸問題。一個完整的線性方程組是由邊界積分方程式和接觸約束關係構成的。通過迭代檢查邊界條件是否滿足接觸準則,最終得到接觸解。
為了證明所提方法的有效性,本文提供了幾個數值例子,並利用商用有限元軟體ANSYS比對,並進一步討論了摩擦係數、材料異向性和孔洞等等對接觸的影響。
We consider the contact problem of multiple heterogeneous solids. According to the material properties, it is divided into anisotropic elastic / viscoelastic / piezoelectric / magneto-electro-elastic materials and can be organized into the same mathematical expression by sorting out the basic equations. For piezoelectric and magneto-electro-elastic materials, we extend the Stroh formalism for anisotropic elastic problems to piezoelectric materials and magneto-electro-elastic materials by expanding the related matrix dimension. For viscoelastic materials, we use the elastic-viscoelastic correspondence principle and the time-stepping method. The former uses Laplace transformation to convert the basic equation into a unified expression. After the solution is completed, the viscoelastic solution is obtained through Laplace inversion. The latter divides the problem into two parts, the initial time and each time step. Both parts can be organized into a unified expression, and the viscoelastic solution is obtained by the superposition of the initial time and each time step. With this unified expression, elastic systems can be used to solve whatever material is considered.
The traditional boundary element method for solving the two-dimensional anisotropic elastic solid problem with prescribed traction and/or prescribed displacement boundary conditions is extended to the multiple bodies friction contact problem. A complete system of linear equations is constructed by boundary integral equations and contact constraint relations. By iteratively checking whether the boundary conditions satisfy the contact criterion, the contact solution is finally obtained. Several numerical examples prove the effectiveness of the proposed methods and further discuss the influence of friction coefficient, material anisotropy, and holes on contact.
[1] Birinci A, Adiyaman G, Yaylacı M, Öner E. Analysis of Continuous and Discontinuous Cases of a Contact Problem Using Analytical Method and FEM. Latin American Journal of Solids and Structures 2015;12:1771-1789.
[2] Antipov YA, Arutyunyan NK. Contact problems of the theory of elasticity with friction and adhesion. Journal of Applied Mathematics and Mechanics 1991;55(6):887-901.
[3] Jacq C, Ne´lias D, Lormand G, Girodin D. Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code. Journal of Tribology 2002;124(4):653-667.
[4] Kogut L, Etsion I. A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact. Journal of Tribology 2003;125(3):499-506.
[5] Zhou YT, Kim TW. Constructing potentials to evaluate magneto-electro-elastic materials in contact with periodically rough surface. European Journal of Mechanics A Solids 2015;53:89-98.
[6] Çömez İ. Frictional moving contact problem of a magneto- electro- elastic half plane. Mechanics of Materials 2021;154:103704.
[7] Jin F, Yan S, Guo X, Wang X. On the contact and adhesion of a piezoelectric half-space under a rigid punch with an axisymmetric power-law profile. Mechanics of Materials 2019;129:189-197.
[8] Elloumi R, Kallel-Kamoun I, El-Borgi S, Guler MA. On the frictional sliding contact problem between a rigid circular conducting punch and a magneto-electro-elastic half-plane. International Journal of Mechanical Sciences 2014;87:1-17.
[9] Emden HK, Wirtz S, Scherer, V. An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model. Chemical Engineering Science 2007;62(23):6914-6926.
[10] Yakovenko A, Goryacheva I. The periodic contact problem for spherical indenters and viscoelastic half-space. Tribology International 2021;161:107078.
[11] Fan H, Sze KY, Yang W. Two-dimensional contact on a piezoelectric half-space. International Journal of Solids and Structures 1996;33(9):1305-1315.
[12] Brezeanu LC. Contact Stresses: Analysis by Finite Element Method (FEM). Procedia Technology 2014;12:401-410.
[13] Franke D, Düster A, Nübel V, Rank E. A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Computational Mechanics 2010;45(5):513-522.
[14] Khoei AR, Nikbakht M. Contact friction modeling with the extended finite element method (X-FEM). Journal of Materials Processing Technology 2006;177(1-3):58-62.
[15] Lovell M. Analysis of contact between transversely isotropic coated surfaces: development of stress and displacement relationships using FEM. Wear 1998;214(2):165-174.
[16] Chen W, Jin W, Cao H. Finite element analysis of indentation contact of double piezoelectric spheres. Materials Today Communications 2021;29:102775.
[17] Barboteu M, Fernández JR, Ouafik Y. Numerical analysis of two frictionless elastic-piezoelectric contact problems. Journal of Mathematical Analysis and Applications 2008;339(2):905-917.
[18] Sun X, Wang K, Wu H, Chen J, Rong L. Finite element simulation of a viscoelastic cell entering a cylindrical channel: Effects of frictional contact. Mechanics of Materials 2022;167:104263.
[19] Hirshikesh, Pramod ALN, Ooi ET, Song C, Natarajan S. An adaptive scaled boundary finite element method for contact analysis. European Journal of Mechanics A Solids 2021;86:104180.
[20] Adachi K, Konno YKY, Masaki SMS. Development of Bolt-Clamped Langevin-Type Transducer with High Mechanical Quality Factor for Excitation of Large Torsional Vibration. Japanese Journal of Applied Physics 1994;33:1182-1188.
[21] Tembleque LR, Buroni FC, Abascal R, Sáez A. 3D frictional contact of anisotropic solids using BEM. European Journal of Mechanics A Solids 2011;30(2):95-104.
[22] Man KW, Aliabadi MH, Rooke DP. Bem frictional contact analysis: Load incremental technique. Computers & Structures 1993;47:893-905.
[23] Paris F, Garrido JA. An incremental procedure for friction contact problems with the boundary element method. Engineering Analysis with Boundary Elements 1989;6(4):202-213.
[24] Nguyen VT, Hwu C. Boundary element method for two-dimensional frictional contact problems of anisotropic elastic solids. Engineering Analysis with Boundary Elements 2019;108:49-59.
[25] Blázquez A, París F, Mantič V. BEM solution of two-dimensional contact problems by weak application of contact conditions with non-conforming discretizations. International Journal of Solids and Structures 1998;35(24):3259-3278.
[26] Man KW, Aliabadi MH, Rooke DP. BEM frictional contact analysis: Modelling considerations. Engineering Analysis with Boundary Elements 1993;11(1):77-85.
[27] Tembleque LR, Buroni FC, Sáez A. 3D BEM for orthotropic frictional contact of piezoelectric bodies. Computational Mechanics 2015;56(3):491-502.
[28] Tembleque LR, Sáez A, Aliabadi MH. Indentation response of piezoelectric films under frictional contact. International Journal of Engineering Science 2016;107:36-53.
[29] Tembleque LR, Buroni FC, Sáez A, Aliabadi MH. 3D coupled multifield magneto-electro-elastic contact modelling. International Journal of Mechanical Sciences 2016;114:35-51.
[30] Nguyen VT, Hwu C. Time-stepping method for frictional contact of anisotropic viscoelastic solids. International Journal of Mechanical Sciences 2020;184:105836.
[31] Yang X, Xiao H. Analyzing Load Case of Mill Roller Bearing with Boundary Element Method, in 2009 International Conference on Measuring Technology and Mechatronics Automation 2009:754-757.
[32] Yang X, Li YC, Yan C, Liu GM, Wang JM, Gui H. Bearing boundary element method based on geometrically similar roller conditions. Journal of Marine Science and Technology 2016;23:938-948.
[33] Nguyen VT, Hwu C. Indentation by multiple rigid punches on two-dimensional anisotropic elastic or viscoelastic solids. International Journal of Mechanical Sciences 2020;178:105595.
[34] Yang X, Xiao H. Three Dimension Multi-body Contact Boundary Element Method, in 2009 International Joint Conference on Computational Sciences and Optimization 2009:652-655.
[35] Nguyen VT, Chen GT, Hwu C. Multibody contact of anisotropic elastic/piezoelectric/magneto-electro-elastic solids. preparing.
[36] Chen YC, Hwu C. Boundary element analysis for viscoelastic solids containing interfaces/holes/cracks/inclusions. Engineering Analysis with Boundary Elements 2011;35:1010-1018.
[37] Hwu C. Anisotropic elastic plates. Springer; 2010.
[38] Hwu C. Anisotropic Elasticity with Matlab. Springer; 2021.
[39] Hwu C, Chen WR, Lo TH. Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. International Journal of Fracture 2019;215:91-103.
[40] Schapery RA. Approximation methods of transform inversion for viscoelastic stress analysis. Proc Fourth USNat Congr Appl Mech 1962;2:1075.
[41] Ting TCT. Anisotropic elasticity: theory and applications. Oxford University Press on Demand; 1996.
[42] Rogacheva NN. The Theory of Piezoelectric Shells and Plates. CRC Press; 1994.
[43] Soh A, Liu J. On the constitutive equations of magnetoelectroelastic solids. Journal of Intelligent Material Systems and Structures 2005;16:597-602.
[44] Haddad YM. Viscoelasticity of engineering materials. Springer; 1995.
[45] Chung D, Xi X. A review of the colossal permittivity of electronic conductors, specifically metals and carbons. Materials Research Bulletin 2022;148:111654.