| 研究生: |
林哲弘 Lin, Che-Hung |
|---|---|
| 論文名稱: |
微波與毫米波高功率放大器及混頻器單晶微波積體電路之研究 Research on Microwave and Millimeter-wave High Power Amplifier and Mixer MMICs |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 功率放大器 、混頻器 、砷化鎵 、單晶微波積體電路 |
| 外文關鍵詞: | Mixer, Power amplifier, GaAs, MMIC |
| 相關次數: | 點閱:119 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高功率放大器與混頻器是通訊系統中相當重要的關鍵性零組件,在發射器的應用上,混頻器是將中頻訊號提升至射頻,高功率放大器則將射頻訊號提升到足以到達接收機的準位,在經由天線發射出去。隨著無線通訊系統往高頻發展的趨勢,GaAs PHEMT逐漸扮演重要的角色,而單晶微波積體電路(MMIC)具有微型化與整合的優點,因此本論文利用砷化鎵單晶製程,提出許多功率放大器及混頻器單晶微波積體電路。
在放大器方面,設計Ku頻段與C頻段放大器。在Ku頻段通訊系統裡,小面積與低成本的功率放大器一直是追求的目標之一,因此本論文提出一個兩級6.5瓦的功率放大器,其面積只有8.55 mm2,與以往兩級的功率放大器比較,具有最高的輸出功率密度(760 mW/mm2),在此頻帶中提出另一個功率放大器,在其輸出匹配電路上,採用分佈式元件(distributed elements)來降低匹配電路所帶來的損耗繼而增加功率輸出效率,此放大器達到最大輸出功率為9瓦,是目前Ku頻段中具有最大輸出功率的單晶微波積體電路。在C頻段功率放大器上,利用半增強型(quasi-enhancement mode)PHEMT製程,完成一個只需單一偏壓的2瓦放大器,對於通訊系統的應用上,不需要使用直流轉換器來產生負電,而能滿足低成本的需求且降低系統的複雜度。
在混頻器方面,採用二極體作為混頻器的非線性元件,電路設計包含單平衡式、雙平衡式與次諧波混頻器。在單平衡混頻器的研究上,利用馬遜巴倫(Marchand balun)設計一個Ku/K頻段的單平衡式混頻器。在雙平衡式混頻器的研究上,由一個180°混成器(Hybrid)與兩個馬遜巴倫取代傳統使用一對馬遜巴倫的對稱平衡式架構,具有縮小面積與中頻訊號引出的便易性。另外,因為高頻高輸出功率的本地振盪器不容易達成,因此二極體混頻器在高頻的應用上,通常採用兩種作法,第一種作法為加偏壓於二極體,使得二極體本身不需較大的本地振盪功率輸出即可達到較高的轉換增益,因此本論文提出一個整合偏壓電路的雙平衡式混頻器,並探討其轉換增益隨著偏壓的變化,第二種方法為採用次諧波混頻器,在次諧波混頻器的研究上,利用反並聯式配對二極體(anti-parallel diode pair)的特性,設計一個新型的K/Ka頻段次諧波混頻器,採用一方向耦合器將RF訊號與LO訊號結合輸入至反並聯式配對二極體,除了其本身寬頻特性以外,也具有阻抗轉換功能,使得LO、RF與二極體對匹配容易,在電路設計上更加彈性。此外,結合雙平衡式架構的固有優點,設計一個Ka頻帶雙平衡式次諧波混頻器,利用兩個螺旋電感互繞式的巴倫(spiral balun)及一個LC諧振槽(LC-Tank),具有小面積與增加中頻訊號頻寬的優點。
Among the RF stages of wireless communication systems, power amplifiers and mixers are essential components. In the transmitter, the mixer converts the IF signal to the RF signal. The power amplifier is used to amplify the RF signal until the receiving level of the receiver. Then the antenna converts the RF signal to a propagating electromagnetic plane wave. As wireless communication systems operating in the high frequency are becoming more prevalent, the GaAs PHEMT becomes a very important device. Monolithic Microwave/millimeter-wave Integrated Circuits (MMICs) have many advantages, including high integration, small size, low cost, and so on. Therefore, the main purpose of this dissertation is to develop and research microwave and millimeter-wave power amplifiers and mixers based on the GaAs PHEMT MMIC processes.
In the research of the power amplifier, the design, fabrication, and measured performance of power amplifiers operating at Ku band and C band will be presented. With the growth of Ku-band commercial wireless systems, the demands of high power amplifier (HPA) at small size and low cost have been significantly increased. In this dissertation, a two-stage 6.5W HPA with chip size of 8.55 mm2 is proposed. Compared with published Ku-band two-stage HPA MMICs, it exhibits the highest output power density (760 mW/mm2). The other Ku-band HPA, whose output matching network uses distributed elements to reduce the insertion loss and consequently increase the power-added efficiency (PAE), is also proposed. The maximum output power of this MMIC is 39.5 dBm (9W), which shows the highest output power at Ku band reported to date. A C-band single-supply 2W HPA using quasi-enhancement mode PHEMT is achieved. Without additional DC-to-DC converter, it can be easy to realize with low cost and less system complexity for system applications.
In the research of the diode mixer, the topologies of diode mixers proposed in this dissertation include single-balanced, double-balanced and sub-harmonic mixers. In the single-balanced configuration, a Ku/K band single-balanced mixer with a Marchand balun is developed. In the double-balanced configuration, a novel double-balanced mixer (DBM) utilizing a 180° hybrid and two Marchand baluns is also demonstrated. It has significant advantages of smaller size and simple IF extraction over the conventional star mixers.
Because it is difficult to realize a high output power oscillator operating at high frequency band, there are two methods to prevent diode mixers from using the high frequency and high power oscillator. The first method is to add bias voltages into Schottky diodes so that the good conversion gain can be obtained under the condition of lower LO power. Hence, a DBM integrated with a voltage control path is proposed. In addition, how the conversion gain varied with different bias voltages is also investigated in this mixer. The other method is to adopt the sub-harmonic mixer. In the research of sub-harmonic mixer, based on the principle of an anti-parallel diode pair (APDP), a novel K/Ka band sub-harmonic is developed. This mixer employs a directional coupler, LC low-pass filter, and a short stub for isolating three ports corresponding to RF, LO input, and IF output ports. The directional coupler also provides impedance transformation between the diode pair, RF, and LO ports. This makes the sub-harmonic mixer more compact and flexible. Based on the inherent advantages of double-balanced topology, a Ka-band double-balanced sub-harmonic mixer is also proposed. With two spiral baluns and a LC tank, it has the advantages of compact size and wider IF bandwidth.
[1] I. Bahl, and P. Bhartia, Microwave Solid State Circuit Design, Wiley-Interscience, 2003.
[2] D.M. Pozar, Microwave and RF design of wireless systems, John Wiley & Sons Inc., 2000.
[3] K.M.S. Murthy, J. Alan, J. Barry, B.G. Evans, N. Miller, R. Mullinax, P. Noble, B. O'Neal, J.J. Sanchez, N. Seshagiri, D. Shanley, J. Stratigos, and J.W. Warner, “VSAT user network examples,” IEEE Communication Magazine, vol. 27, pp. 50-57, May 1989.
[4] C. Wolejsza, D. Taylor, M. Grossman, and W. Osborne, “Multiple access protocols for data communications via VSAT networks,” IEEE Communication Magazine, vol. 25, pp. 30-39, July 1987.
[5] J.B. Shealy, T. Jackson, A. Rachlin,M. Poulton, N. Bukhari, K. Ditzler, X. Gong, L. Sumpter, and D. Weeks, “A 2 watt Ku-band linear (multi-carrier) transmit module for VSAT applications,” in IEEE MTT-S Int. Dig., vol. 3, pp. 1055-1058, June 1999.
[6] N. Abramson, “Internet access using VSATs,” IEEE Communication Magazine, vol. 38, pp. 60-68, July 2000.
[7] Y. Butel, D. Langrez, J.F. Villemazet, G. Coury, J. Decroix, and J.L. Cazaux, ” in 2005 European Microw. Conf., vol. 3, pp. 4 pp, Oct. 2005.
[8] K. Matsunaga, Y. Okamoto, and M. Kuzuhara, “A 12-GHz, 12-W HJFET amplifier with 48% peak power-added efficiency,” IEEE Microw. Wireless Compon. Lett., vol. 5, pp.402-404, Nov. 1995.
[9] J.G. Kim, H.M. Park, J.Y. Kim, S.I. Jeon, S. Hong, ”A 2-watt balanced power amplifier MMIC for Ku-band satellite communications,” Microw. Opt. Technol. Lett., vol. 4, pp 342-344, Aug. 2004.
[10] D.T. Bryant, K. Salzman, and R. Hudgens, “Ku-band monolithic 7-watt power amplifier using AlGaAs/GaAs 0.25-μm T-gate heterostructure FET technology,’’ in IEEE MTT-S Int. Dig., vol. 3, pp. 1373-1376, 1993.
[11] Q. Zhang and S.A. Brown, “Fully monolithic 8 W Ku-band high power amplifier,” in IEEE MTT-S Int. Dig., vol. 2, pp. 1161-1164, 2004.
[12] T. Shimura,T. Satoh,Y. Hasegawa, and J. Fukaya, “A high power density, 6W MMIC for Ku-band applications,” in IEEE MTT-S Int. Dig., vol. 3, pp. 851-854, 2003.
[13] I.J. Bahl, “Ku-band MMIC power amplifiers developed using MSAG MESFET technology,” Microw. Journal, vol. 49, pp. 56-82, Feb. 2006.
[14] M. Cardullo, C. Page, D. Teeter, and A. Platrker, “High efficiency X-Ku band MMIC power amplifiers,’’ in IEEE MTT-S Int. Dig., vol. 1, pp. 145-148, 1996.
[15] C. Florian, R. Cignani, G. Vannini, and M.C. Comparini, “A Ku band monolithic power amplifier for TT&C applications,” in 2005 European Microw. Conf., vol. 3, pp. 1623-1626, 2005.
[16] A. Ishimaru, M. Maeda, T. Yoshida, J. Ozaki, and S. Kamihashi, “35% PAE 6 W Ku-band power amplifier module,” in IEEE MTT-S Int. Dig., vol. 3, pp. 955-958, 1999.
[17] C.F. Campbell, “A fully integrated Ku-band Doherty amplifier MMIC,” IEEE Microw. Wireless Compon. Lett., vol. 9, pp.114-116, Mar. 1999.
[18] H.Z. Liu, C.H. Lin, C.K. Chu, H.K. Hunag, M.P. Houng, C.H. Chang, C.L. Wu, C.S. Chang, and Y.H. Wang, “A single-supply Ku-band 1-W power amplifier MMIC with compact self-bias PHEMTs,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp.330-332, Jun. 2006.
[19] T.W. Crowe, and R.J. Mattauch, “Conversion Loss in GaAs Schottky-Barrier Mixer Diodes,” IEEE Trans. Microw. Theory Tech., vol. 34, pp. 753-760, July 1986.
[20] K. Hettak, G.A. Morin, and M.G. Stubbs, “A novel miniature multilayer MMIC CPW single side band CPW mixer for up conversion at 44.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 606-608, 2005.
[21] Y.J. Hwang, C.H. Lien, H. Wang, M.W. Sinclair, R.G. Gough, H. Kanoniuk, and T.H. Chu, “A 78-114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer,” IEEE Microw. Wireless Compon. Lett., vol. 12, pp. 209-211, Jun. 2002.
[22] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2435-2440, July 2005.
[23] M.K. Lee, J.D. Park, D. An, B.H. Lee, S.J. Lee, T.J. Baek, J.H. Oh, S.W. Woon, H.J. Kwon, W.J. Kim, Y.H. Kim, H.M. Park, and J.K. Rhee, “A 94 GHz Diode Mixer for Low LO Power Operation”, in 2005 Asia-Pacific Microw. Conf., pp. 3pp, Dec. 2005.
[24] G. Chattopadhyay, F. Rice, D. Miller, H.G. LeDuc, J. Zmuidzinas, “A 530-GHz balanced mixer,” IEEE Microw. Wireless Compon. Lett., vol. 9, pp. 467-469, Sep. 1999.
[25] C. Wang, J. Gu, and X. Sun, “Low Cost Compacted Ka-band Rat-Race Mixer”, in 2005 Asia-Pacific Microw. Conf., pp. 4pp, Dec. 2005.
[26] B.S. Virdee, A.S. Virdee, and B.Y. Banyamin, Broadband Microwave Amplifiers, Artech House, 2004.
[27] I.D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, London: Institution of Electrical Engineers, 2001.
[28] S.J. Mahon, D.J. Skellern, and F. Green, “A technique for modeling S-parameters for HEMT structures as a function of gate bias,” IEEE Trans. Microw. Theory Tech., vol. 40, pp. 1430–1440, July. 1992.
[29] S.W. Chen, O. Aina, W. Li. L. Phelps, and Y. Lee, “An accurately scaled small-signal model for interdigitated power PHEMT up to 50 GHz,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 700–703, May 1997.
[30] S.C. Cripps, Advanced Techniques in RF Power Amplifier Design, Artech House, 2002.
[31] Y. Daido, M. Minowa, and N. Okubo, “Class-A GaAs FET power amplifier design for optimizing intermodulation product,” in IEEE MTT-S Int. Dig., pp. 393-396, June 1989.
[32] P.M. White, “Effect of input harmonic terminations on high efficiency class-B and class-F operation of PHEMT devices,” in IEEE MTT-S Int. Dig., pp. 1611-1614, June 1998.
[33] Y. Youngoo, K. Choi, and K.P. Weller, “DC boosting effect of active bias circuits and its optimization for class-AB InGaP-GaAs HBT power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1455-1463, May 2004.
[34] F. Filicori, and V.A. Monaco, “Simulation and Design of Microwave Class-C Amplifiers through Hamonic Analysis,” in IEEE MTT-S Int. Dig., pp. 362-364, Apr. 1979.
[35] T. Sowlati, C.A.T. Salama, J. Sitch, G. Rabjohn, and D. Smith, “Low voltage, high efficiency GaAs Class E power amplifiers for wireless transmitters,” IEEE J. Solid-State Circuits, vol. 30, pp.1074–1080, Oct. 1995.
[36] M. Wren, and T.J. Brazil, “Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1723-1731, May 2005.
[37] R. Lane, “De-embedded Device Scattering Parameters,” Microw. Journal, pp149-156, 1984.
[38] U. Stumper, “Uncertainty of VNA S-parameter measurement due to nonideal TRL calibration items,” IEEE Trans. Instrumentation and Measurement, vol. 54, pp. 676-679, May 2005.
[39] Agilent Technologies, Specifying calibration standards for the HP8510 network analyzer, HP product note 8510-5B, Hewlett Packard.
[40] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, “Accurate small-signal modeling of HFET's for millimeter-wave applications,” IEEE Trans. Microw. Theory and Tech., vol. 44, pp. 432-437, Mar. 1996.
[41] R. Anholt, and S. Swirhun, “Equivalent-circuit parameter extraction for cold GaAs MESFET's,” IEEE Trans. Microw. Theory and Tech., vol. 39, pp. 1243-1247, July 1991.
[42] A. Cidronali, G. Collodi, A. Santarelli, G. Vannini, and G. Manes, “Small-signal distributed FET modeling through electromagnetic analysis of the extrinsic structure,” in IEEE MTT-S Int. Dig., pp. 287-290, June 1998.
[43] J.M. Golio, Microwave MESFETs & HEMTs, Artech House, 1991.
[44] P. Ladbrooke, MMIC Design GaAs FETs and HEMTs, Artech House, 1988.
[45] S. Kayali, G. Ponchak, and R. Shaw, GaAs MMIC Reliability Assurance Guideline for Space Applications, JPL Publication, 1996.
[46] S.C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House Inc., 1999.
[47] M. Ohtomo, “Stability analysis and numerical simulation of multidevice amplifiers,” IEEE Trans. Microw. Theory and Tech., vol. 41, pp. 983-991, June 1993.
[48] S. Goto, T. Kunii, K. Fujii, A. Inoue, Y. Sasaki, Y. Hosokawa, R. Hattori, T. Ishikawa, and Y. Matsuda, “Stability analysis and layout design of an internally stabilized multi-finger FET for high-power base station amplifiers,” in IEEE MTT-S Int. Dig., pp. 229-232, June 2003.
[49] A. Collado, F. Ramirez, and A. Suarez, “Analysis and stabilization tools for microwave amplifiers,” in IEEE MTT-S Int. Dig., pp. 945-948, June 2004.
[50] L. Potteau, P. Quentin, and M. Parisot, “Ku-band modular MMICs for up to 5W power blocks for VSAT applications,” in Gallium Arsenide Applications Symp., pp. 44-47, Apr. 1994.
[51] B. McFarland, A Shor, and A. Tabatabaei, “A 2.4 & 5 GHz dual band 802.11 WLAN supporting data rates to 108 Mb/s,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symp., pp. 11-14, Oct. 2002.
[52] W. Abey, T. Moriuchi, R. Hajji, T. Nakamura, Y. Nonaka, E. Mitani, W. Kennan, and H. Dang, “A single supply high performance PA MMIC for GSM handsets using quasi-enhancement mode PHEMT,” in IEEE MTT-S Int. Dig., vol. 2, pp. 923-926, 2001.
[53] F. Huin, C. Duvanaud, V.Serru, F. Robin, and E. Leclerc, “A single supply very high power and efficiency integrated PHEMT amplifier for GSM applications,” in Proc. IEEE RFIC Symp. Dig., pp. 101-104, June 2000.
[54] T. Moriuchi, W. Abey, R. Hajji, W. Kennan, T. Nakamura, S. Maruyama, T. Kitawada, Y. Nonaka, and E. Mitani, “A single supply miniature PA MMIC for multi-mode digital handsets using quasi-enhancement mode PHEMT,” in 22nd Annu. Technical Dig. Gallium Arsenide Integrated Circuit (GaAs IC) Symp., pp. 29-32. Nov. 2000.
[55] J. Cao, X.W. Wang, C.K. Quek, R. Singh, and H. Nakamura, “A 3.2 V, 45% efficient, novel Class AB+C CDMA MMIC power amplifier using quasi- enhancement mode PHEMTs,” in Proc. IEEE RFIC Symp., Dig., pp. 93-96, June 2000.
[56] M. Park, H. Ahn, D.M. Kang, H. Ji, J. Mun, H. Kim, and K.I. Cho, “Single supply, high linearity, high efficient PHEMT power devices and amplifier for 2 GHz & 5 GHz WLAN applications,” in Proc. Eur. Microw. Conf., vol. 1, pp. 371-374, Oct. 2003.
[57] R.E. Gebara, C.H. Lee, S. Chakraborty, D. Mukherjee, J. Bhattacharjee, D. Heo, and J. Laskar, “A GaAs HBT 5.8 GHz OFDM transmitter MMIC chip Set,” in IEEE MTT-S Int. Dig., vol. 1, pp. 571-574, 2001.
[58] H.Z. Liu, C.C. Wang, Y.H. Wang, C.C. Hsu, C.H. Chang, W. Wu, C.L. Wu, and C.S. Chang, “A Single-Bias C-Band 29 dBm PHEMT MMIC Power Amplifier,” in Int. Conf. Solid State Devices Materials, Nagoya, Japan, pp. 636-637, Sep. 2002.
[59] B.E. Seow, L. Nguyen, M. Vice, E. Chan, and Y.H. Chow, “A high isolation enhancement mode GaAs PHEMT buffer amplifier,” in National Conference of Telecommunications Technology (NCTT) Proceeding, pp. 58-62, Jan. 2003.
[60] S.A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[61] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[62] S.A. Maas, Microwave Mixers 2nd ed., Artech House, 1993.
[63] S.A. Maas and K.W. Chang, “A broadband planar, doubly balanced monolithic Ka-band diode mixers,” IEEE Trans. Microw. Theory Tech., vol 41, pp. 2330–2335, Oct. 1993.
[64] Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns,” in IEEE MTT-S Int. Dig., pp. 119-122, 1995.
[65] S.S. Kim, J.H. Lee and K.W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. and Wireless Compon. Lett., pp. 440-442, 2004.
[66] S.A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[67] K.S. Ang and I.D. Robertson, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microw. Theory and Tech., vol.49, pp. 402-406, 2001.
[68] C.Y. Ng, M. Chongcheawchamnan, I.D. Robertson, “Analysis and design of a high-performance planar Marchand balun,” in IEEE MTT-S Int. Dig., vol. 1, pp. 113-116, 2002.
[69] S.A. Maas and K.W. Chang, “A broadband planar, doubly balanced monolithic Ka-band diode mixers,” IEEE Trans. Microw. Theory Tech., vol. 41, pp. 2330–2335, Oct. 1993.
[70] WIN, Inc., 0.15μm InGaAs PHEMT Power Device Model Handbook, 2005.
[71] K. Yamauchi, Y. Iyama, M. Yamaguchi, Y. Ikeda, S. Urasaki, and T. Takagi, “X-band MMIC power amplifier with an on-chip temperature- compensation circuit,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2501-2506, Dec. 2001.
[72] B. Maoz, “Temperature compensation? It’s so easy [hybrid MIC temperature- controlled attenuation],” in Gallium Arsenide Integrated Circuit Symposium, pp. 277-280, Nov. 1988.
[73] G.S. Dow, T.H. Chen, T.N. Ton, M. Aust, J. Yonaki, R. Carandang, D. Yang, M. Quadrozzi, S.S. Andrews and W. Titus, “Monolithic receivers with integrated temperature compensation function,” in Gallium Arsenide Integrated Circuit Symposium, pp. 267-270, Oct. 1991.
[74] S.W. Chen, K.A. Zaki and R.G. West, “Tunable, temperature-compensated dielectric resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 38, pp.1046-1052, Aug. 1990.
[75] D. Coffing, E. Main, M. Randol, and G. Szklarz, “A variable gain amplifier with 50-dB control range for 900-MHz applications,” IEEE J. Solid-State Circuits, vol. 37, pp.1169-1175, Sep. 2002.
[76] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTT-S Int. Dig., vol. 2, pp. 879-882, 1991.
[77] K.L. Deng, Y.B. Wu, Y.L. Tang, H. Wang, and C.H. Chen, “Broadband monolithic GaAs-based HEMT diode mixers,” in 2000 Asia-Pacific Microw. Conf., pp. 1135-1138, 2000.
[78] W.C. Chen, S.Y. Chen, J.H. Tsai, T.W. Huang, and H. Wang, “A 38-48-GHz miniature MMIC subharmonic mixer,’’ in Gallium Arsenide and Other Semiconductor Application Symp., European, pp. 437-440, 2005.
[79] H.I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications,” Electronic Lett., vol. 37, pp. 435-436, 2001.
[80] H.R. Ahn, and B. Kim, “Transmission-line directional couplers for impedance transforming,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp.537-539, Oct. 2006.
[81] R.G. Hicks and P.J. Khan, “Numerical Analysis of Subharmonic Mixers Using Accurate and Approximate Models”, IEEE Trans. Microw. Theory and Tech., vol. 30, pp.2113-2120, Dec. 1982.
[82] A. Madjar, “A novel general approach for the optimum design of microwave and millimeter wave subharmonic mixers”, IEEE Trans. Microw. Theory and Tech., vol. 44, pp.1997-1999, Nov. 1996.
[83] M.Cohn, James E. Degenford, Burton A. Newman, “Harmonic mixing with an antiparallel diode pair”, IEEE Trans. Microw. Theory and Tech., vol. 2, pp.71-76, May 1978.
[84] P. Blount and C. Trantanella, “A high IP3, subharmonically pumped mixer for LMDS applications,” IEEE Compound Semiconductor Integrated Circuit Symp., pp 171-174, 2000.
[85] C.A. Zelley, A.R. Barnes and R.W. Ashcroft, “A 60 GHz double balanced sub-harmonic mixer MMIC,” in Gallium Arsenide Applications Symp., pp. 24-28, Sep. 2001.