簡易檢索 / 詳目顯示

研究生: 楊植凱
Yang, Chih Kai
論文名稱: 反射式震波風洞設計
Reflected Shock Tunnel Design
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 85
中文關鍵詞: 震波管反射式震波風洞
外文關鍵詞: shock tube, shock tunnel
相關次數: 點閱:93下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用數值模擬方法設計一反射式震波風洞,本風洞主要由一震波管及超音速噴嘴組成,震波管總長度13公尺,驅動段長度3公尺,被驅動段長度10公尺,內徑 18 公分。主要驅動氣體為氦氣,測試氣體為空氣。本設計包含了設計為馬赫數2馬赫及5馬赫的兩組噴嘴,以製造所需馬赫數之測試流場。該風洞將座落在成大歸仁校區航太試驗場。該風洞之主要設計目標為進行馬赫數5以上之極音速外流場以及馬赫數2以上之超音速氫氣燃燒相關實驗。設計標的為風洞出口自由流馬赫數可大於 5,並趨近極音速衝引擎載具之飛行範圍,以符合極音速外流場實驗需求。風洞出口自由流馬數為2時,自由流溫度須超過1300 K絕對溫度, 壓力須大於0.5大氣壓,以符合氫氣在超音速流場中之自燃條件,以利進行超音速氫氣燃燒實驗。反射式震波風洞為一短時間地面測試設備,一般測試時間範圍在毫秒(ms)等級,考量到附屬資料擷取系統能力,本風洞的測試時間需求訂定為至少一毫秒。
    本研究利用兩組數值計算程式進行設計參數模擬預估,可壓縮多相流計算程式(Compressible Multiphase Flow Solver, CMFS) 主要用來模擬震波管之操作情形,以獲得溫度,壓力,測試時間等操作參數,UNIC-UNS 主要用來模擬超音速噴嘴之流場狀況。 NASA 的 Glenn Research Center所發展的 Chemical Equilibrium Application (CEA) 程式主要用來驗證CMFS 所模擬之震波管熱力性質,以及計算噴嘴氣源之化學組成。 根據模擬結果,現行設計可以達到符合實驗需求之操作馬赫數,溫度,壓力,以及測試時間。 震波風洞的設計圖面及相關控制系統也將在本論文內一併介紹。

    This work aims to report the design of a reflected shock tunnel which will be built and tested at National Cheng Kung University, Taiwan, in year 2010. Notably, this tunnel will be the first ground test facility for hypersonic flow in universities in Taiwan. The design objective of reflected shock tunnel is to produce two free-stream conditions for a preliminary study of scramjet: (1) Mach 2 flow with temperature up to 1300 K and pressure up to 0.5 atm for the design conditions of supersonic Hydrogen combustion and (2) Mach 5 flow for the design condition of external flow. Test time is longer than 1 ms.. This shock tunnel is composed by a 13-meter-long shock tube, of which the diameter is 18 cm. The length of driver section is 3 m and the driven section is 10 m. The preliminary design is based on the numerical simulation results by using two different codes, UNIC-UNS, and a compressible multiphase flow solver (CMFS). In this work, the compressible multiphase flow solver is used to investigate the near-tailored condition and stagnation properties under different initial conditions in helium-air shock tube. The numerical simulations of nozzle flow are implemented by UNIC-UNS. Chemical Equilibrium Application (CEA) code is used to validate the shock tube reservoir conditions simulated by CMFS and calculate the chemical composition of test gas, air, in the reservoir region. According to our simulation results, the present design is satisfactory to meet the required operation conditions. Besides, the schematic diagram and the relevant instrumentation of the reflected shock tunnel are presented in this thesis.

    ABSTRACT…………………………………………..i ACKNOWLEDGEMENTS………………………….iii TABLE OF CONTENTS ……………………………iv LIST OF TABLES……………………………………v LIST OF FIGURES …………………………………vi NOMENCLATURE………………………………….ix CHAPTER 1.INTRODUCTION…………………………………………………………………..1 2.THEORETICAL ANALYSIS……………………………………………………..5 2.1 REFLECTED SHOCK TUNNEL………………………………………………5 2.2 DURATION OF UNIFORM FLOW……………………………………………8 2.3 NOZZLE STARTING PROCESS ……………………………………………13 3. TUNNEL PERFORMANCE AND THE DESIGN……………………………16 3.1 NUMERICAL METHOD………………………………………………………17 3.2 CODE VALIDATION………………………………………………………….27 3.3 SHOCK TUBE SIMULATION………………………………………………..34 3.4 NOZZLE FLOW SIMULATION………………………………………………………………………41 3.5 DESIGN OF OPERATIONAL PARAMETERS OF SHOCK TUNNEL…..57 4. TUNNEL SUBSYSTEMS……………………………………………………..62 4.1 SHOCK TUNNEL……………………………………………………………..62 4.2 INSTRUMENTATION………………………………………………………...68 4.3 FLOW VISUALIZATION SYSTEM………………………………………....71 4.4 DATA ACUISTION SYSTEM………………………………………………..72 4.5 CALIBRATION OF DEMONSTRATIVE SYSTEM………………………...73 5. CONCLUSION AND RECOMMENDATION………………………………...81 5.1 CONCLUSION………………………………………………………………..81 5.2 RECOMMENDATIONS………………………………………………………82 REFERENCES……………………………………………………………………83

    [1] D. W. Holder, D. L. Schultz, “On the Flow in a Reflected Shock Tunnel,” A. R. C. R&M NO.3265, 1962

    [2] L. Pennelegion, P. J. Gough, “The Change in Shock-Tunnel Tailoring Mach Number Due to Driver Gas Mixtures of Helium and Nitrogen ,” A. R. C. R&M NO.3398, 1965

    [3] A. G. Gaydon, L. R. Hurle, “The Shock Tube in High Temperature Chemical Physics,” Reinhold Publishing Corporation, 1963

    [4] C. E. Smith, “The starting process in a hypersonic nozzle,” J. Fluid Mech. Vol. 24, part 4 ,pp. 625-640, 1966

    [5] P. W. Huber, C. J. Schexnayder, and C. R. McClinton , “Criteria for Self Ignition of Supersonic Hydrogen-Air Mixture,” NASA TP-1457, 1979

    [6] Y. S. Chen, ”UNIC-UNS User’s Manual,” Engineering Sciences Inc., 2006

    [7] Y. S. Chen, P. Liaw, H. M. Shang, and C. P. Chen, “Numerical Analysis of Complex Internal and External Viscous Flows with a Second Order Pressure Based Method,” AIAA 24th Fluid Dynamics Conference, Orlando, FL, July 6-9, 1993

    [8] Z. J. Chen, C. P. Chen, and Y. S. Chen, “A Pressure Correction Method for the Calculation of Compressible Chemical Reacting Flows,” AIAA 23rd Plasmadynamics & Lasers Conference, Nashville , TN July 6-8, 1992

    [9] H. Chen, S. M. Liang, “Flow visualization of shock/water column interactions,” Shock Wave, 17, pp. 309-321, 2008

    [10] H. Chen, “Two-Dimensional Simulation of Stripping Breakup o f a Water Droplet,” AIAA Journal, Vol. 46, No. 5, pp. 1135-1143, 2008

    [11] C. Y. Wen, H. Chen, and C. K. Yang, “Preliminary Design and Simulation of Reflected Shock Tunnel in Taiwan,” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, German, Oct.19-22, 2009

    [12] C. Y. Wen, H. Chen, and C. K. Yang, “Parallel Simulation of Hypersonic Air-He Shock Tube,” 22nd International Conference on Parallel Computational Fluids Dynamic, Kaohsiung, Taiwan, May 17-21, 2010

    [13] S. Gordon, B. J. McBride, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis,” NASA RP-1311,1994

    [14] B. J. McBride, S. Gordon, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description,” NASA RP-1311,1996

    [15] K. M. Shyue, “A fluid-mixture type algorithm for barotropic twofluid flow problems,” J. Comput. Phys. 200, pp.718–748, 2004

    [16] R. Saurel, O. LeMetayer, “A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation,” J. Fluid. Mech., 431, pp. 239–271, 2001

    [17] G. Allaire, S. Clerc, S. Kokh, “A five-equation model for simulation of interfaces between compressible fluids,” J. Comput. Phys. 181, 577–616, 2002

    [18] A. Harten, P. D. Lax, and B. van Leer, B., “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws,” SIAM Review, vol. 25, pp. 35-61, 1983

    [19] P. Batten, N. Clarke, C. Lambert, D. Causon, “On the choice of wave speeds for the HLLC Riemann solver,” SIAM J. Sci. Comput. 18, pp.1553–1570, 1997

    [20] E. F. Toro, M. Spruce, and W. Spears, “Restoration of the Contact Surface in the HLL-Riemann Solver,” Shock Waves 4, pp. 25-34, 1994

    [21] S. Srinivasan, J. C. Tanehill, and K. J. Weilmuenster, “Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air,” NASA RP-1181, 1987

    [22] S. Gordon, B. J. McBride, “Thermodynamic Data to 20000 K for Monatomic Gases,” NASA TP-1999-208523, 1999

    [23] T. J. Barth, “Recent Development in High Order K-Exact Reconstruction on Unstructured Meshes,” AIAA Paper 93-0668, 1993.

    [24] K. C. Karki, S. V. Patankar, “Pressure Based Calculation Procedure for Viscous Flows at all Speeds in Arbitrary Configurations,” AIAA Journal, Vol. 27, pp. 1167-1174, 1989

    [25] Y. S. Chen, “An Unstructured Finite Volume Method for Viscous Flow Computations,” 7th International Conference on Finite Element Methods in Flow Problems, Huntsville, Alabama. ,Feb. 3-7, 1989

    [26] H. M. Shang, Y. S. Chen, P. Liaw, M. S .Shih, and T. S. Wang, “Numerical Modeling of Spray Combustion with an Unstructured Grid Method,” AIAA Paper 95-2781, 1995

    [27] H. M. Shang, Y. S. Chen, P. Liaw, and C. P. Chen, “A Hybrid Unstructured Grid Method for Fluid Flow Computation,” Numerical Developments in CFD Symposium of the Joint ASME/JSME Fluids Engineering Conference, Hilton Head Island, SC. , August 13-18, 1995

    [28] H . M. Shang, M. H. Shih, Y. S. Chen, and P. Liaw, “Flow Calculation on Unstructured Grids with a Pressure-Based Method,” Proceedings of 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, NV. , Sep. 4-8, 1995

    [29] H. M. Shang, and Y. S. Chen, “Unstructured Adaptive Grid Method for Reacting Flow Computation,” AIAA Paper 97-3183, July 1997

    [30] S. J. Zhang, J. Liu, Y. S. Chen, and T. S. Wang, “Adaptation for Hybrid Unstructured Grid with Hanging Node Method,” AIAA Pape,r pp. 2001-2657, 2001

    [31] H. A. Van Der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput.,Vol. 13(2), pp. 631-644, 1992

    [32] Y. Saad, and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., Vol. 7(3), pp. 856-869, 1986

    [33] B. E. Launder, D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3(2), pp. 269-289, 1974

    [34] Y. S. Chen, S. W. Kim, “Computation of turbulent flows using an extended k-epsilon turbulence closure model,” NASA CR-179204, 1987

    [35] NASA Glenn Research Center, Chemical Equilibrium with Applications (CEA), http://www.grc.nasa.gov/WWW/CEAWeb/ceaHome.htm, 2009

    [36] T. Saito, K. Takayama, “Numerical Simulations of Nozzle Starting Process,” Shock Waves, 9, pp.73-79, 1999

    [37] J. D. Anderson, “Hypersonic and High Temperature Gas Dynamics 2nd Edition,” AIAA Education Series, 2006

    [38] J. L. Stollery, J. E. Smith, “A note on the variation of vibrational temperature along a nozzle,” J. Fluid Mech.,, 13, pp.225-236, 1962

    [39] J. L. Stollery, C. Park, “Computer solutions to the problem of vibrational relaxation in hypersonic nozzle flows,” J. Fluid Mech., 19, pp.113-123, 1964

    [40] C.Y. Wen, “Hypersonic Flow over Spheres,” Ph. D. thesis, Caltech, 1994

    [41] C. Park, “On convergence of computation of chemically reacting flows,” AlAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985

    [42] M. G. Dunn, S. W. Kang , “Theoretical and Experimental Studies of Reentry Plasmas,” NASA CR-2232, 1973

    [43] F. S. Billig, “Research on Supersonic Combustion,” AIAA-92-0001, 30th Aerospace Science Meeting & Exhibit, Reno, NV, 1992

    [44] NASA, “U.S. Standard Atmosphere,” U.S. Government Printing Office, 1976

    [45] C. S. Craddock, “ Computational Optimization of Scramjets and Shock Tunnel Nozzles,” Ph. D. Thesis, Department of Mechanical Engineering, University of Queensland, 1999

    [46] W. Mertzkirch, “Flow Visualization,” Academic Press Inc., 1987

    [47] F. K. Lu,D. E. Marren, “Advanced Hypersonic Test Facilities,” AIAA, 2002

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE