研究生: |
彭立琪 Peng, Li-chi |
---|---|
論文名稱: |
氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍色發光二極體之研究 Characteristics of AZO:Y2O3 transparent conducting thin films and theirs application on GaN-based Light Emission Diode |
指導教授: |
賴韋志
Lai, Wei-chi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 氧化鋅鋁摻雜釔 、氮化鎵 、透明導電薄膜 |
外文關鍵詞: | GaN, AZO:Y2O3, transparent conductive thin films |
相關次數: | 點閱:83 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是針對氧化鋅鋁摻雜釔(AZO:Y2O3;AZO:Y)之透明導電薄膜,對其光電特性進行一系列的量測分析,以其在P型氮化鎵(P-GaN)上之歐姆接觸特性研究,並將此薄膜成長在氮化鎵藍色發光二極體上與傳統之透明導電膜-氧化銦錫(ITO)相互比較,探討其光電特性之差異。
本實驗採用的是濺鍍(sputtering)系統來成長薄膜。由實驗可得,當直流功率為150瓦成長之AZO:Y薄膜,在氮氣環境下700℃熱處理1分鐘時,有最低電阻率為6.898×10-4Ω-cm,而遷移率(mobility)為25.1cm2/V-s及載子濃度(carrier concentration)為-3.61×1020cm-3。經熱處理後,在可見光波段380nm~700nm,其平均穿透率皆可高於85%。且其光吸收邊界(optical absorption band)有明顯的藍移(blue shift)現象,此現象乃是因載子濃度的提高所造成的柏斯坦-摩斯效應(Burstein-Moss effect)。
將所得之AZO:Y薄膜作為P型氮化鎵上之透明電極,與傳統之ITO透明電極比較。AZO:Y薄膜直接成長在P型氮化鎵上無法得到線性之歐姆接觸特性,但在700℃熱處理1分鐘時,有最佳之電流-電壓特性,其特徵接觸電阻(ρc)為1.45×10-1Ω-cm2。ITO透明電極在氮氣環境下600℃熱處理5分鐘時,有線性之歐姆接觸特性,其特徵接觸電阻(ρc)為7.80×10-2Ω-cm2。
經由比較不同的透明導電膜(ITO、AZO:Y、ITO/AZO:Y)在氮化鎵藍色發光二極體上之光電特性可發現。在20mA注入下,ITO與AZO:Y發光二極體其順向導通電壓(Vf)分別為3.37V與3.55V,且其光輸出功率(light output power)分別為3.59mW與3.96mW。AZO:Y發光二極體其導通電壓約只高出ITO發光二極體0.2V,但其光輸出功率則增加了約10%。
藉由在p-GaN與AZO:Y透明導電膜之間,成長一層ITO可有效的改善歐姆接觸特性,進而降低發光二極體之導通電壓。在20mA注入時,ITO/AZO:Y發光二極體其順向導通電壓(Vf)為3.2V比AZO:Y發光二極體 Vf為3.55V,可成功降低約0.35V。
經由本研究可知,AZO:Y薄膜因具有高光穿透率與良好之電流散佈效果,因此可替代氧化銦錫(ITO)來當成透明導電膜應用在氮化鎵發光二極體(GaN-based LED)上的潛力。
In this study, transparent and conductive AZO:Y2O3 (AZO:Y) thin films are performed as the potential transparent contact layer on nitride-based light emitting diodes.
When the DC power of 150W, it showed a lowest resistivity of 6.89×10-4 Ω-cm and a carrier concentration of 3.61×1020 cm-3 and a mobility of 25.1 cm2/V-s that the thermal annealing at 700C for 1 min in nitrogen ambient. And the AZO:Y films showed high transmittance (>85%) in the visible wavelength range after thermal annealing.
We had demonstrated the AZO:Y films and ITO films as ohmic contacts on p-type GaN . The I-V characteristic of AZO:Y contact on p-GaN was not a perfect ohmic property after thermal annealing. And the ITO contact on p-GaN was an ohmic property after thermal annealing at 600°C for 5min in nitrogen ambient. The lowest specific contact resistance of AZO:Y and ITO contact on p-GaN was 1.45×10-1 and 7.8×10-2Ω-cm2, respectively.
GaN-based LEDs with ITO and AZO:Y contact layers were fabricated for the optoelectrical characteristics study. The forward voltage (light output power) was 3.375 V (3.59mW) and 3.55 V (3.96mW) for the LEDs with ITO and AZO:Y contact layer under 20mA current injection, respectively. The forward voltage of the LED with AZO:Y contact layer was slightly higher 0.2V than the LED with ITO contact under 20mA current injection. However, the light output power of the LED with AZO:Y contact layer is larger 10% than the LED with ITO contact under 20mA current injection.
Inserting the ITO contact layer between p-GaN and AZO:Y can be improved the electrical properties of LEDs. The forward voltage of LED with ITO/AZO:Y contact layer was 3.2V under 20mA current injection and was successfully 0.35V lower than the LED with AZO:Y contact.
These results revealed that the AZO:Y film is promising as alternative to ITO for transparent electrode application on GaN-based light-emitting diode.
第一章
[1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)
[2] T. Mukai, D. Morita, and S. Nakamura, J. Cryst. Growth 189/190,
778 (1998).
[3] S.Nakamura and G. Fasol, The Blue Laser Diodes (Springer, Heidelberg,1997)
[4] T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys. 37, 479 (1998).
[5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T.Mukai, Jpn. J. Appl. Phys. 34, 1332 (1995).
[6] S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 30, 1998 (1991).
[7] G. S. Nakamura, Semicond. Sci. Technol. 14, 27 (1999).
[8] T.Minami, Semiconductor Science And Technology, 20(2005)
第二章
[1] G. Neumann, Phys. Status Solids B105, 605 (1981).
[2] T.Minami, H.Sato, H.Nanto and S.Takata, Jpn.J.Appl.Phys 24, 781 (1985).
[3] L.S.Hsu, C.S.Yeh, C.C.Kuo, B.R.Huang, S.Dhar, Journal of Optoelectronics and Advanced Materials 7, 3039 (2005).
[4] J.F.Chang, H.L.Wang, M.H.Hon, Journal of Crystal Growth 211, 93 (2000).
[5] M.Chen, Z.L.Pei, C.Sun, L.S.Wen, X.Wang, Materials Letters 48, 194 (2001).
[6] X.Z.Qiang, D.Hong, L.Yan, C.Hang, Materials science 9,132 (2006).
[7] F.Quaranta, A.Valentini, F.R.Rizzi, Jpn.J. Appl. Phys. 74, (1993)
[8] J. R. Chelikowsky, Solid State Commun 122, 351 (1997).
[9] S.K.Ghandhi, R.J.Field, J.R.Shealy, Appl. Phys. 37, 449 (1980).
[10] J.L. Vossen, Physics of Thin Films 9, 1 (1977).
[11] 謝振剛, “ 氧化鋅鋁透明導電膜光、電特性之研究 ",國立中央大學光電科學研究所,碩士論文 (2005).
[12] 施敏, 半導體元件物理與製作技術, p.96
[13] D.Schroder, Semiconductor material and device characterization, p.147
第三章
[1] 謝振剛, “ 氧化鋅鋁透明導電膜光、電特性之研究 ",國立中央大學光電科學研究所,碩士論文 (2005).
[2] 李正中, 薄膜光學與鍍膜技術 第三版
[3] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R.F. Huang and L. S. Wen, J. Appl. Phys 90, 3432(2001).
[4] 徐國偉, “氧化鋅鎵透明導電膜之光電特性及其在P型氮化鎵上歐姆接觸特性之研究 ",國立成功大學光電科學與工程研究所,碩士論文 (2006).