簡易檢索 / 詳目顯示

研究生: 洪嘉政
Hong, Jia-Zheng
論文名稱: 3D雷射積層與熱蒸鍍薄膜之鎂負極顯微組織與充放電機制研究
Microstructures and Charge-Discharge Characteristics of Magnesium Film Anodes Produced by 3D Laser Additive Manufacturing and Thermal Evaporation
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 3D雷射積層製程鎂電極金屬化合物界面層充放電
外文關鍵詞: 3D laser additive manufacturing, Magnesium anodes, intermetallic compound interface, charge-discharge
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於現行廣泛使用之碳系負極材料,雖有較好的循環性,但能量密度偏低,而金屬、合金材料作為鋰離子二次電池之負極則具有較高的電容量與體積能量密度優勢,因此目前有許多能與鋰離子進行嵌脫反應的材料陸續被研究開發。本實驗選用鎂金屬作為研究素材,其不僅具有高理論電容量、成本較低及對環境友善無毒等優點,綜合以上各點,鎂基金屬為最具發展潛能之金屬基負極材料之一。
    有別於過去在成型微細3D結構時,皆以由上而下(top-down)的蝕刻或切削等方式進行處理,積層製造的概念則為:將離散材料逐層堆疊,由下而上(bottom-up)使產品成型。飛秒雷射技術的應用即屬於其中一種方法,其適用領域廣,目前多見於精細加工、材料成形與外科醫療等應用,低熱影響與非線性吸收特性,使其有別於普通的雷射加工。
    目前的電極材料研究主要分以粉末與薄膜製程,故本實驗除對鎂金屬的粉末與薄膜電極進行調查,更首先引入飛秒雷射之應用,結合積層製造的概念,以雷射積層燒結製程進行活性材料之鋪層與燒結塗覆而製成積層電極,除顯微組織觀察,亦解析其常溫與高溫環境下充放電機制,與調查其電化學性質。實驗結果顯示,3D雷射積層電極除不須仰賴碳黑與黏合劑、生產效率較好,且其電極同時具有表面結構改質與化合界面層接合效應,可延緩活性材料嵌脫鋰時之體積膨脹效應,改善電極結構穩定性與循環壽命。另在高溫充放電測試下,循環測試結果穩定,且電容量有提升現象。根據電化學阻抗分析結果顯示3D雷射積層製程可有效降低活性材料與鋰離子各階段反應的阻抗值,可確認鎂3D積層電極具有應用潛力。

    Magnesium is an anode material with high energy density, favorable voltage plateau, low cost. It is one of the most potential materials of Li-ion batteries. In order to find the best coating way of active materials, slurry-cast method, thermal evaporation method, and 3D femtosecond laser additive manufacturing were applied to fabricate electrodes. In this study, the microstructures and electrochemical characteristics were discussed. Through series of research, 3D femtosecond laser additive manufacturing not only demonstrated the outstanding performance of Mg, but also introduced kinds of benefits, such as high productivity, no needs of binder and carbon black, and free of post-treatment. In sum, 3D laser additive manufacturing have great potential for electrode fabrication.

    目錄 摘要 I 英文延伸摘要 II 誌謝 X 總目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 1 第二章 理論基礎與文獻回顧 3 2-1 鋰離子二次電池與工作原理簡介 3 2-2 理論電容量與C-rate 3 2-3 鋰離子電池負極材料 4 2-4 鎂基負極材料 5 2-5 泛用型混漿塗佈電極製程特性 6 2-6 高放型熱蒸鍍薄膜電極製程特性與熱處理效應 6 2-7 3D積層製造電極與飛秒雷射技術應用 7 2-8 粉末及薄膜與3D雷射積層電極特異性 8 第三章 實驗步驟與方法 12 3-1 實驗流程概述 12 3-2 實驗粉末與電極製備 12 3-2-1 混漿塗佈電極製備 12 3-2-2 熱蒸鍍電極製備 13 3-2-3 3D飛秒雷射積層電極製備 13 3-3 電極材料微觀組織分析 14 3-3-1 低掠角X光繞射分析 14 3-3-2 掃描式電子顯微鏡觀察與能量散佈光譜分析 14 3-4 四點探針電阻率量測 14 3-5 電池組裝 14 3-6 電池測試 15 3-7 電化學性質分析 15 3-7-1 循環伏安分析 15 3-7-2 電化學阻抗分析 15 3-7-3 離子溶出分析 16 第四章 結果與討論 24 4-1 負極材料粉末顯微結構與試片代號 24 4-2 鎂粉末電極特性 24 4-2-1 鎂粉末電極充放電循環特性 24 4-2-2 鎂粉末電極顯微結構分析 25 4-2-3 鎂粉末電極循環伏安分析 26 4-2-4 鎂粉末電極55°C充放電循環特性 27 4-3 蒸鍍鎂薄膜電極特性 27 4-3-1 蒸鍍鎂薄膜電極充放電循環特性 28 4-3-2 蒸鍍鎂薄膜電極顯微結構分析 28 4-3-3 蒸鍍鎂薄膜電極循環伏安分析 29 4-3-4 蒸鍍鎂薄膜電極55°C充放電循環特性 30 4-4 3D雷射積層鎂電極特性 31 4-4-1 3D雷射積層鎂電極充放電循環特性 31 4-4-2 3D雷射積層鎂電極顯微結構分析 32 4-4-3 3D雷射積層鎂電極截面解析 33 4-4-4 3D雷射積層鎂電極循環伏安分析 34 4-4-5 3D雷射積層鎂電極55°C充放電循環特性 34 4-5 電化學阻抗分析 35 4-6 離子溶出分析 (ICP) 36 4-7 不同製程電極差異性探討 36 4-7-1 電阻率量測 36 4-7-2 各製程優缺點比較 36 第五章 結論 71 參考文獻 73  

    1. Lewis, G.N. & Keyes, F.G., The Potential of the Lithium Electrode. Journal of the American Chemical Society, 1913. 35(4): pp. 340-344.
    2. Winter, M., Besenhard, J. O., Spahr, M. E., & Novak, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998. 10(10): pp. 725-763.
    3. Broussely, M., Biensan, P., & Simon, B., Lithium insertion into host materials: the key to success for Li ion batteries. Electrochimica Acta, 1999. 45(1-2): pp. 3-22.
    4. Scrosati, B., Lithium Rocking Chair Batteries: An Old Concept? Journal of The Electrochemical Society, 1992. 139(10): pp. 2776-2781.
    5. Cabana, J., Monconduit, L., Larcher, D., & Palacin, M. R, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010. 22(35): pp. E170-192.
    6. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chem Soc Rev, 2009. 38(9): pp. 2565-2575.
    7. Ji, S., Zhang, J., Wang, W., Huang, Y., Feng, Z., Zhang, Z., & Tang, Z., Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery. Materials Chemistry and Physics, 2010. 123(2-3): pp. 510-515.
    8. Kasavajjula, U., Wang, C., & Appleby, A.J., Nano and bulk silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources, 2007. 163(2): pp. 1003-1039.
    9. Kohandehghan, A., Kalisvaart, P., Kupsta, M., Zahiri, B., Amirkhiz, B. S., Li, Z., Memarzadeh, E. L., Bendersky, L. A., & Mitlin, D., Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J. Mater. Chem. A, 2013. 1(5): pp. 1600-1612.
    10. Im, H. S., Cho, Y. J., Lim, Y. R., Jung, C. S., Jang, D. M., Park, J., Shojaei , F., & Kang, H. S., Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano, 2013. 7(12): pp. 11103-11111.
    11. Derrien, G., Hassoun, J., Panero, S., & Scrosati, B., Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced Materials, 2007. 19(17): pp. 2336-2340.
    12. Armstrong, A. R., Lyness, C., Panchmatia, P. M., Islam, M. S., & Bruce, P. G., The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. Nat Mater, 2011. 10(3): pp. 223-229.
    13. Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J. C., & Tarascon, J. M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry, 2007. 17(36): pp. 3759-3772.
    14. Obrovac, M.N. & Chevrier, V.L., Alloy negative electrodes for Li-ion batteries. Chem Rev, 2014. 114(23): pp. 11444-11502.
    15. Nitta, N., Wu, F., Lee, J. T., & Yushin, G., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): pp. 252-264.
    16. Santos-Peña, J., Brousse, T., & Schleich, D.M., Mg(2)Si and MSi(2) (M = Ca, Fe) Silicon Alloys as Possible Anodes for Lithium Batteries. Ionics, 2000. 6(1-2): pp. 133-138.
    17. Park, C.M. & Jeon, K.J., Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun (Camb), 2011. 47(7): pp. 2122-2124.
    18. Hamon, Y., Brousse, T., Jousse, F., Topart, P., Buvat, P., & Schleich, D. M., Aluminum negative electrode in lithium ion batteries. Journal of Power Sources, 2001. 97-98: pp. 185-187.
    19. Kim, H., Choi, J., Sohn, H. J., & Kang, T., The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. Journal of the Electrochemical Society, 1999. 146(12): pp. 4401-4405.
    20. Kim, H., Park, B., Sohn, H. J., & Kang, T., Electrochemical characteristics of Mg-Ni alloys as anode materials for secondary Li batteries. Journal of Power Sources, 2000. 90(1): pp. 59-63.
    21. Kim, H., Kim, Y. J., Kim, D. G., Sohn, H. J., & Kang, T., Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries. Solid State Ionics, 2001. 144(1-2): pp. 41-49.
    22. Shi, Z., Liu, M., Naik, D., & Gole, J. L., Electrochemical properties of Li–Mg alloy electrodes for lithium batteries. Journal of Power Sources, 2001. 92(1-2): pp. 70-80.
    23. Roberts, G.A., Cairns, E.J., & Reimer, J.A., Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources, 2002. 110(2): pp. 424-429.
    24. Sivashanmugam, A., Renganathan, N. G., & Gopukumar, S., Performance of a magnesium-lithium alloy as an anode for magnesium batteries. Journal of Applied Electrochemistry, 2004. 34(11): pp. 1135-1139.
    25. Park, C. M., Kim, Y. U., Kim, H., & Sohn, H. J., Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries. Journal of Power Sources, 2006. 158(2): pp. 1451-1455.
    26. Hung, F. Y., Lui, T. S., Xiao, R. S., Tseng, Y. W., & Wang, C. H., Structural Effects and Charge-Discharge Characteristics of Mg-C/Mg-Li Alloy Thin Film Materials. Materials Transactions, 2011. 52(6): pp. 1127-1131.
    27. Brutti, S., Mulas, G., Piciollo, E., Panero, S., & Reale, P., Magnesium hydride as a high capacity negative electrode for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(29): pp. 14531-14537.
    28. Chen, K. J., Hung, F. Y., Lui, T. S., & Xiao, R. S., Improvement of Charge-Discharge Characteristics of the Mg-Ni Powder Electrodes at 55°C. Journal of Nanomaterials, 2013. 2013: pp. 1-6.
    29. Ma, R., Liu, Y., Yang, Y., Gao, M., & Pan, H., Mg2Si anode for Li-ion batteries: Linking structural change to fast capacity fading. Applied Physics Letters, 2014. 105(21): p. 213901.
    30. Zhang, W.J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): pp. 13-24.
    31. Wang, L., He, X., Li, J., Sun, W., Gao, J., Guo, J., & Jiang, C., et al., Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed Engl, 2012. 51(36): pp. 9034-9037.
    32. Liu, Y., Ma, R., He, Y., Gao, M., & Pan, H., Synthesis, Structure Transformation, and Electrochemical Properties of Li2MgSi as a Novel Anode for Li-lon Batteries. Advanced Functional Materials, 2014. 24(25): pp. 3944-3952.
    33. Ma, R., Liu, Y., Yang, Y., Pu, K., Gao, M., & Pan, H., Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries. Acta Materialia, 2015. 98: pp. 128-134.
    34. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., & Levi, E., Prototype systems for rechargeable magnesium batteries. Nature, 2000. 407(6805): pp. 724-727.
    35. Lee, K. L., Jung, J. Y., Lee, S. W., Moon, H. S., & Park, J. W., Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources, 2004. 129(2): pp. 270-274.
    36. Beaulieu, L. Y., Hewitt, K. C., Turner, R. L., Bonakdarpour, A., Abdo, A. A., Christensen, L., Eberman, K. W., Krause, L. J., & Dahn, J. R., The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. Journal of The Electrochemical Society, 2003. 150(2): p. A149.
    37. Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A., 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater, 2013. 25(33): pp. 4539-4543.
    38. Wartena, R., Curtright, A. E., Arnold, C. B., Piqué, A., & Swider-Lyons, K. E., Li-ion microbatteries generated by a laser direct-write method. Journal of Power Sources, 2004. 126(1-2): pp. 193-202.
    39. Gamaly, E. G., Rode, A. V., Luther-Davies, B., & Tikhonchuk, V. T., Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasmas, 2002. 9(3): pp. 949-957.
    40. Lasagni, A., Bringing the Direct Laser Interference Patterning Method to Industry: a One Tool-Complete Solution for Surface Functionalization. Journal of Laser Micro/Nanoengineering, 2015. 10(3): pp. 340-344.
    41. Chang, K. P., Tsai, T. W., Huang, K. Y., Huang, C. H., Wang, S. Y., Cheng, C. W., Chen, J. K., & Tzou, D. Y., Thermal response of a dental tissue induced by femtosecond laser pulses. Appl Opt, 2013. 52(27): pp. 6626-6635.
    42. Wu, P. H., Cheng, C. W., Chang, C. P., Wu, T. M., & Wang, J. K., Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds. Journal of Micromechanics and Microengineering, 2011. 21(11): p. 115032.
    43. Nie, B., Huang, H., Bai, S., & Liu, J., Femtosecond laser melting and resolidifying of high-temperature powder materials. Applied Physics A, 2014. 118(1): pp. 37-41.
    44. Koos, E. & Willenbacher, N., Capillary forces in suspension rheology. Science, 2011. 331(6019): pp. 897-900.
    45. Koos, E., Dittmann, J., & Willenbacher, N., Kapillarkräfte in Suspensionen: Rheologische Eigenschaften und potenzielle Anwendungen. Chemie Ingenieur Technik, 2011. 83(8): pp. 1305-1309.
    46. Bitsch, B., Dittmann, J., Schmitt, M., Scharfer, P., Schabel, W., & Willenbacher, N., A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. Journal of Power Sources, 2014. 265: pp. 81-90.
    47. Dudney, N.J., Solid-state thin-film rechargeable batteries. Materials Science and Engineering: B, 2005. 116(3): pp. 245-249.
    48. Yang, Y., Peng, Z., Wang, G., Ruan, G., Fan, X., Li, L., Fei, H., Hauge, R. H., & Tour, J. M., Three-dimensional thin film for lithium-ion batteries and supercapacitors. ACS Nano, 2014. 8(7): pp. 7279-7287.
    49. Patil, A., Patil, V., Shin, D. W., Choi, J. W., Paik, D. S., & Yoon, S. J., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin, 2008. 43(8-9): pp. 1913-1942.
    50. Jagannathan, M. & Chandran, K.S.R., Electrochemical Charge/Discharge Behavior and Phase Transitions during Cell Cycling of Li(Mg) Alloy Anodes for High Capacity Li Ion Batteries. Journal of the Electrochemical Society, 2013. 160(10): pp. A1922-A1926.
    51. Cheng, C.W., Fabrication of Porous Ti Structures with Nanostructures from Ti Powders by Femtosecond Laser Pulses. Journal of Laser Micro/Nanoengineering, 2015. 10(3): pp. 310-313.
    52. Sun, H., Xin, G., Hu, T., Yu, M., Shao, D., Sun, X., & Lian, J., High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun, 2014. 5: p. 4526.
    53. Zhuang, Q. C., Sun, S. G., Xu, S. D., Qiu, X. Y., & Qiang, Y. H., Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries. , Lithium Ion Batteries - New Developments, 2012. pp. 189-226

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE