| 研究生: |
林育娟 Lin, Yiu-Jiuan |
|---|---|
| 論文名稱: |
雌激素及免疫細胞在小鼠子宮內膜異位組織的建立及生長之角色 The role of estrogen and immune cells in the establishment and growth of endometriosis in mouse model |
| 指導教授: |
陳麗玉
Wing, Lih-Yuh C. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 免疫細胞 、子宮內膜異位症 、雌激素 |
| 外文關鍵詞: | immune cells, estrogen, endometriosis |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮內膜異位症是生殖年齡婦女常見的疾病之一,其特徵是子宮內膜組織生長於子宮腔以外的地方。子宮內膜異位症形成最被接受的理論為植入論,即逆流經血所含子宮內膜組織附著於腹腔,植入後生長。血管新生是組織移植至異位處,能夠存活及生長的重要因素。子宮內膜異位症已被認為是一種雌激素依賴性的病症。由於子宮內膜異位症患者的腹腔內高量的白血球及細胞激素,子宮內膜異位症也被認為是’’發炎’的病症。然而雌激素和免疫細胞如何影響子宮內膜異位組織的血管新生及生長至今仍是不清楚。因此我們利用手術誘導異位子宮形成之小鼠模式,探討雌激素與免疫細胞在異位子宮血管新生及生長的角色。首先將小鼠部分子宮組織移植於腹腔壁,並切除其卵巢,然後自皮下埋入含雌激素或芝蔴油之膠囊。在子宮移植後1至7天,我將小鼠犧牲後取其異位及正位子宮,利用BrdU incorporation來觀察異位子宮組織的生長及血管新生的情形。實驗結果顯示,在雌激素的刺激下,正位子宮有增生現象,但是在異位子宮,子宮移植後1至2天,細胞出現死亡及生長停止,並且部份血管有瓦解的現象。在4至5天時,異位子宮血管內皮細胞出現BrdU-positive cells,即使沒有雌激素刺激下,也有明顯血管新生。在子宮移植後5至7天,雌激素刺激之異位子宮細胞之增生現象明顯高於未處理者;這些結果顯示在異位子宮建立之初期,異位子宮組織內出現新生之血管。
此外,我們也分析子宮移植後異位子宮組織內免疫細胞的種類及小鼠腹腔內發炎的情形。我發現不論有或沒有雌激素補充的小鼠,其異位子宮組織在移植2至4天後出現大量嗜中性球細胞與巨噬細胞,而且腹腔嗜中性球細胞的數量及細胞驅化素(MIP-1α, MIP-2)的含量也上升;腹腔內之巨噬細胞數量在子宮組織移植前後雖未改變,但組織移植後之腹腔巨噬細胞分泌細胞驅化素能力增加。自腹腔分離之嗜中性球細胞與巨噬細胞在培養時可分泌較高量VEGF,其分泌可受到IL-6,TNF-α及LPS的調控。此外,嗜中性球細胞與巨噬細胞也分泌IL-6、TNF-α、MIP-1α及MIP-2。綜合而言,子宮組織異位初期所出現之嗜中性球細胞與巨噬細胞可能促進血管新生,進而協助子宮組織在異位處生長。
我們進一步分析雌激素對於已存在異位子宮組織之影響。子宮自體移植於腹腔,三週後小鼠異位子宮組織已形成,然後再自小鼠皮下埋入含雌激素或芝蔴油之膠囊。之後,在不同的時段將小鼠犧牲後取異位及正位子宮組織,觀察其血管新生及內膜細胞增生的情形,組織內免疫細胞的變化。實驗結果發現,雌激素可刺激異位子宮及正位子宮組織內膜細胞的增生、血管新生及增加嗜中性球細胞及巨噬細胞的數量,而且子宮組織以及嗜中性球細胞和巨噬細胞可表現VEGF。
綜合言之,利用手術誘導異位子宮形成之小鼠模式,我們得知雌激素可刺激異位子宮組織之生長、血管新生及免疫細胞浸潤入組織內,而嗜中性球細胞及巨噬細胞可能是促使異位子宮組織建立初期血管新生的重要因子。
Endometriosis is characterized by the growth of endometrial tissues outside the uterine cavity. The implantation hypothesis is widely accepted as the etiology of endometriosis. To survive at ectopic site, the development of new blood supply is important. There are substantial evidences showing that the progression of endometriosis is estrogen-dependent and that abnormal inflammatory responses are associated with endometriosis. However, how estrogen and immune factors can contribute to endometriotic angiogenesis and growth is not clear. In this study, mouse model of surgically induced endometriosis was used to investigate the effect of estrogen on immune factors and angiogenesis during the development of endometriosis.
Uterine tissues were autotransplanted into peritoneum of ovariectomized mice supplemented with 17beta-estradiol or oil. At different days, cell proliferation and angiogenesis in ectopic and eutopic uterine tissues were examined. Our results showed that estrogen stimulated cell proliferation in eutopic tissues. However, no BrdU-positive cells were detected in ectopic tissues at 1 to 2 days after transplantation. Meanwhile, some disintegrated blood vessels were observed in ectopic tissues. Despite of the presence or absence of estrogen, BrdU-positive cells were detected in vascular endothelial cells of ectopic tissues at day 4 to day 5, indicating that angiogenesis occurred at these periods and that is not estrogen-associated event. Subsequently at day 5 to 7, cell proliferation in ectopic tissues of estrogen-treated mice was higher than control, suggesting that estrogen plays an important role in ectopic tissue growth after angiogenesis.
The types of infiltrated immune cells in ectopic tissues and in peritoneal cavity were also investigated. Profound infiltration of macrophage and neutrophil in ectopic tissues occurred in vehicle- or estrogen-treated mice at day 2 and day 4. The number of neutrophil and chemokine levels of MIP-1alpha and MIP-2 in peritoneal fluid also reached peak during this period. Although the number of macrophages in peritoneal cavity did not change, the basal secretions of chemokines from peritoneal macrophages after tissue transplantation were much higher than those from day 0. Peritoneal neutrophil and macrophage in culture secreted VEGF, which could be stimulated by TNF-α, IL-6 or LPS. Furthermore, peritoneal neutrophils and macrophages also secreted TNF-α, IL-6, MIP-1α and MIP-2. These results suggest that there may be a positive loop in recruiting leukocytes and promoting cytokine secretion in peritoneal cavity. Taken together, neutrophils and macrophages may promote neovascularization thereby helping the subsequent growth of ectopic endometrial implants at early stage of endometriosis.
The effect of estrogen on angiogenesis and immune response of pre-existed endometriotic tissue was also studied. Mice were ovariectomized and transplanted with uterine tissue. Three weeks later after the formation of endometriotic tissues, mice were divided into vehilce-treated and estrogen-treated groups. At different days mice were sacrificed and their eutopic and ectopic tissues were collected and analyzed. Without estrogen treatment, there were no obvious changes in cell proliferation, angiogenesis, and leukocytes infiltration. With estrogen treatment, the proliferation of endometrial cell and endothelial cell, the infiltration of neutrophils and macrophages, VEGF expression, and vascular permeability in eutopic and ectopic tissues were increased.
In conclusion, neutrophil and macrophage may promote endometriotic angiogenesis at early stage of endometriosis, and estrogen may further stimulate the growth and immune response of endometriotic tissues after establishing the blood supply.
1. Van der Linden, P.J.Q.: Theories on the pathogenesis of endometriosis. Hum. Reprod. 11(S3): 53-65, 1996.
2. Rock, J.A. and Markham, S.M.: Pathologenesis of endometriosis. Lancet 340: 1264-1267, 1992.
3. Ryan, I.P., and Taylor, R.N.: Endometriosis and infertility: new concepts. Obstet. Gynecol. Surv. 52: 365-371, 1997.
4. Strathy, J.H., Molgard, C.A. and Coulman, C.B.: Endometriosis and infertility: a laparoscopic study of endometriosis among fertile and infertile women. Fertil. Steril. 38: 667-672, 1982.
5. Thomas, E.T. and Prentice, A.: The aetiology and pathogenesis of endometriosis. Reprod. Med. Rev. 1: 21-36, 1992.
6. Barbieri, R.L.: Comparison of the pharmacology of nafarelin and danazol. Am. J. Obstet. Gynecol. 162: 581-585, 1990.
7. Barbieri, R.L.: Gonadotropin-releasing hormone agonists: treatment of endometriosis. Clin. Obstet. Gynecol. 36: 636-641, 1993.
8. Cummings, A.M. and Metcalf. J.L.: Induction of Endometriosis in mice: a new model sensitive to estrogen. Reprod. Toxicol. 9: 233-238, 1995.
9. Sharpe, K.L., Bertero, M.C., Muse, K.N. and Vernon, M.W.: Spontaneous and steroid-induced recurrence of endometriosis after suppression by a gonadotropin-releasing hormone antagonist in the rat. Am. J. Obstet. Gynecol. 164: 187-194, 1991.
10. Sampson, J.A.: Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am. J. Obstet. Gynecol. 14: 422-469, 1927.
11. Hanahan, D.: Signaling vascular morphogenesis and maintenance. Science 277: 48-50, 1997.
12. Folkman, J., D’Amore, P.A.: Blood vessel formation: What is its molecular basis? Cell 87: 1153-1155, 1996.
13. Folkman. J.and Shing, Y.: Angiogenesis. J. Biol. Chem. 267: 10931-109314, 1992.
14. Carmeliet, P. and Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407: 249-257, 2000.
15. Carmeliet, P., Rerreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Harpal, K., Eberhardt, C.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435-439, 1996.
16. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., Orquote-Shea, K.S., Powell-Braxton, L., Hillan, K.J., Moore, M.W.: Heterozygous embryonic lethality induced by targeted in activation of the VEGF gene. Nature 380: 439-442, 1996.
17. Waltenberger, J., Claesson, W.L., Siegbahn, A., Shibuya, M. and Heldin, C.H.: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269: 26988-26995, 1994.
18. Millauer, B., Wizigmann, V.S., Schnurch, H., Martinez, R., Moller, N.P.H., Risau, W. and Ullrich, A.: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835-846, 1993.
19. Fong, G.H., Rossant, H., Gertsenstein, M. and Breitman, M.L.: Role of Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66-70, 1995.
20. Ferrara, N. and Davis-Simith, T.: The biology of vascular endothelial growth factor. Endocrine Rev. 18: 4-25, 1997.
21. Hanahan, D. and Folkman, J.: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996.
22. Tuszynski, G.P. and Nicosis, R.F.: The role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 18: 71-76, 1996.
23. O’Reilly, M.S., Homgren, L. and Shing, Y.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 79: 315-328, 1994.
24. Nisole, M., Mine, J-M., Casanas-Roux, F., Donnez, J., and Anaf, V.: Morphometric study of the stromal vascularization in peritoneal endometriosis. Fert. Steril. 59: 681-684, 1993.
25. Vernon, M.W. and Wilson, E.A.: Studies on the surgical induction of endometriosis in the rat. Fertil. Steril. 44: 684-694, 1985.
26. McLaren, J., Prentice, A., Charnock-Jones, and Smith. S. K. Vascular endothelial growth factor concentrations are elevated in peritoneal fluid of women with endometriosis. Hum. Reprod. 11: 220-22, 1995.
27. McLaren, J., Prentice, A., Charnock-Jones, D.S., Millican, S.A., Muller, K.H., Sharkey, A.M. and Smith. S. K.: Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroid. J. Clin. Invest. 98: 4820-489, 1996.
28. Oosterlynck, D.J., Meuleman, C. Sobis, H., Vandeputte, M. and Koninckx, P.R.: Angiogenic activity of peritoneal fluid from women with endometriosis. Fertil. Steril. 59: 778-782, 1993.
29. Smith, S.K.: Angiogenesis. Semin. Reprod. Endocrinol. 15: 221-227, 1997.
30. Dabrosin, C., Gyorffy, S., Margetts, P., Ross, C. and Gauldie, J.: Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am. J. Pathol. 161: 909-918, 2002.
31. Hull, M.L., Charnock-Jones, D.S., Chan, C.L., Bruner-Tran, K.L., Osteen, K.G., Tom, B.D., Fan, T.P. and Smith, S.K.: Antiangiogenic agents are effective inhibitors of endometriosis. J. Clin. Endocrinol. Metab. 88: 2889-2899, 2003.
32. Nap, A.W., Griffioen, A.W., Dunselman, G.A., Bouma-Ter Steege, J.C., Thijssen, V.L., Evers, J.L. and Groothuis, P.G.: Antiangiogenesis therapy for endometriosis. J. Clin. Endocrinol. Metab. 89: 1089-1095, 2004.
33. Brenner, R.M., Nayak, N.R., Slayden, O.D., Critchley, H.O.D., and Kelly, R.W.: Premenstrual and menstrual changes in the macaque and human endometrium, relevance to endometriosis. Annals New York Academy of Sciences 955: 61-73, 2002.
34. Halme, J., Hammond, M.G., Hulka, J.F., Raj, S.G., and Talbert, L.M.: Retrograde menstruation in healthy women and in patients with endometriosis. Obstet. Gynecol. 64: 151-154, 1984.
35. Liu, D.T., and Hitchcock, A.: Endometriosis: its association with retrograde menstruation, dysmenorrhoea and tubal pathology. Br. J. Obstet. Gynaecol. 93: 859-862, 1986.
36. Oosterlynck, D.J., Meuleman, C., Waer, M., Vandeputte, M., and Koninckx, P.R.: The natural killer activity of peritoneal fluid lymphocytes is decreased in women with endometriosis. Fertil. Steril. 58: 290-295, 1992.
37. Kanzaki, H., Wang, H.S., Kariya, M., and Mori, T.: Suppression of natural killer cell activity by sera from patients with endometriosis. Am. J. Obstet. Gynecol. 167: 257-261, 1992.
38. Oosterlynck, D.J., Cornillie, F.J., Waer, M., Vandeputte, M. and Koninckx, P.R.: Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil. Steril. 56: 45-51, 1991.
39. Vigano, P., Vercellini, P., Blasio, A.M.D., Colombo, A., Candiani, G.B. and Vignali, M.: Deficient antiendometrium lymphocyte-mediated cytotoxicity in patients with endometriosis. Fertil. Steril. 56: 894-899, 1991.
40. Braun, D.P., Gebel, H., Rana, N. and Dmowski, W.P.: Cytolysis of eutopic endometrial cells by peripheral blood monocytes and peritoneal macrophages in women with endometriosis. Fertil. Steril. 69: 1103-1108, 1998.
41. Hill, J.A., Faris, H.M.P., Schiff, I. and Anderson, D.J.: Characterization of leukocyte subpopulations in the peritoneal fluid of women with endometriosis. Fertil. Steril. 50: 216-222, 1988.
42. Jone, R.K., Bulmer, J.N. and Searle, R.F.: Immunohistochemical characterization of stromal leukocytes in ovarian endometriosis: comparison of eutopic and ectopic endometrium with normal endometrium. Fertil. Steril. 66: 81-89, 1996.
43. Bulmer, J.N., Jone, R.K. and Searle, R.F.: Intraepithelial leukocytes in endometriosis and adenomyosis: comparison of eutopic and ectopic endometrium with normal endometrium. Hum. Reprod. 13: 2910-2915, 1998.
44. Halme, J., Becker, S., Hammond, M.G., Raj, M.H.G. and Raj, S.: Increased activation of pelvic macrophages in fertile women with mild endometriosis. Am. J. Obstet. Gynecol. 145: 333-337, 1983.
45. Boutten, A., Dehoux, M. and Edelman, P.: IL-6 and acute phase plasma proteins in peritoneal fluid of women with endometriosis. Clin. Chim. Acta. 210: 187-195, 1992.
46. Halme, J.: Release of tumor necrosis factor-alpha by human peritoneal macrophages in vivo and in vitro. Am. J. Obstet. Gynecol. 161: 1718-1725, 1989.
47. Akoum, A., Lemay, A., McColl, S., Turcot-Lemay, L. and Maheux, R.: Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil. Steril. 66: 17-23, 1996.
48. Khorram, O., Taylor, R.N., Ryan, I.P., Schall, T.J. and Landers, D.V.: Peritoneal fluid concentrations of the cytokine RANTES correlate with the severity of endometriosis. Am. J. Obstet. Gynecol. 169: 1545-1549, 1993.
49. Arici, A., Tazuke, S.I., Attar, E., Kliman, H.J. and Olive, D.L.: Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol. Hum. Reprod. 2: 40-45, 1996.
50. Mueller, M.D., Mazzucchelli, L., Buri, C., Lebovic, D.I., Dreher, E. and Taylor, R.N.: Epithelial neutrophil-activating peptide 78 concentrations are elevated in the peritoneal fluid of women with endometriosis. Fertil. Steril. 79(S1): 815-820, 2003.
51. Akoum, A., Lemay, A., Paradis, I., Rheault, N. and Maheux, R.: Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum. Reprod. 11: 2269-2275, 1996.
52. Akoum, A., Jolicoeur, C. and Boucher, A.: Estradiol amplifies interleukin-1-induced monocyte chemotactic protein-1 expression by ectopic endometrial cells of women with endometriosis. J. Clin. Endocrinol. Metab. 85: 896-904, 2000.
53. Hornung, D., Bentzien, F., Wallwiener, D., Kiesel, L. and Taylor, R.N.: Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol. Hum. Reprod. 7: 163-168, 2001.
54. Gao, Y., Luo, L. and He, F.: Effect of IL-1 beta and TNF-alpha on the expression of monocyte chemotactic protein-1 in endometriotic cells. J. Tongji. Med. Univ. 19: 212-214, 1999.
55. Bergqvist, A., Nejaty, H., Froysa, B., Bruse, C., Carlberg, M., Sjoblom, P. and Soder, O.: Production of interleukins 1beta, 6 and 8 and tumor necrosis factor alpha in separated and cultured endometrial and endometriotic stromal and epithelial cells. Gynecol. Obstet. Invest. 50: 1-6, 2000.
56. Garcia-Velasco, J.A., Seli, E. and Arici, A.: Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by integrin-dependent cell adhesion. Biol. Reprod. 61: 548-552, 1999.
57. Iwabe, T., Harada, T., Tsudo, T., Nagano, Y., Yoshida, S., Tanikawa, M. and Terakawa, N.: Tumor necrosis factor-alpha promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J. Clin. Endocrinol. Metab. 85: 824-829, 2000.
58. Arici, A., Seli, E., Senturk, L.M., Gutierrez, L.S., Oral, E. and Taylor, H.S.: Interleukin-8 in the human endometrium. J. Clin. Endocrinol. Metab. 83: 1783-1787, 1998.
59. Halme, J., White, C., Kauma, S., Estes, J. and Haskill, S.: Peritoneal macrophages from patients with endometriosis release growth factor activity in vitro. J. Clin. Endocrinol. Metab. 66: 1044-1049, 1988.
60. Rana, N., Braun, D. P., House, R., Gebel, H., Rotman, C. and Dmowski, W. P.: Basal and stimulated secretion of cytokines by peritoneal macrophages in women with endometriosis. Fertil. Steril. 65: 925-930, 1996.
61. Keenan, J. A., Chen, T. T., Chadwell, N. L., Torry, D. S. and Caudle, M. R.: Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am. J. Reprod. Immunol. 2: 180-183, 1994.
62. Keenan. J. A., Chen, T. T., Chadwell, N. L., Torry, D.S. and Caudle, M. R.: IL-1 beta, TNF-alpha, and IL-2 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am. J. Reprod. Immunol. 34: 381-385, 1995.
63. Wu, M. Y., Ho, H. N., Chen, S. U., Chao, K. H., Chen, C. D. and Yang YS.: Increase in the production of interleukin-6, interleukin-10, and interleukin-12 by lipopolysaccharide-stimulated peritoneal macrophages from women with endometriosis. Am. J. Reprod. Immunol. 41: 106-111, 1999.
64. Akoum, A., Kong, J., Metz, C. and Beaumont, M.C.: Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil. Steril. 77: 989-994, 2002.
65. Sakamoto, Y., Harada, T., Horie, S., Iba, Y., Taniguchi, F., Yoshida, S., Iwabe, T. and Terakawa, N.: Tumor necrosis factor-alpha-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-kappa B activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J. Clin. Endocrinol. Metab. 88: 730-735, 2003.
66. Nasu, K., Arima, K., Kai, K., Fujisawa, K., Nishida, M. and Miyakawa, I.: Expression of epithelial neutrophil-activating peptide 78 in cultured human endometrial stromal cells. Mol. Hum. Reprod. 7: 453-458, 2001.
67. Akoum, A., Lawson, C., McColl, S. and Villeneuve. M.: Ectopic endometrial cells express high concentrations of interleukin (IL)-8 in vivo regardless of the menstrual cycle phase and respond to oestradiol by up-regulating IL-1-induced IL-8 expression in vitro. Mol. Hum. Reprod. 7: 859-866, 2001.
68. Nishida, M., Nasu, K., Fukuda, J., Kawano, Y., Narahara, H. and Miyakawa, I.: Down-regulation of interleukin-1 receptor type 1 expression causes the dysregulated expression of CXC chemokines in endometriotic stromal cells: a possible mechanism for the altered immunological functions in endometriosis. J. Clin. Endocrinol. Metab. 89: 5094-5100, 2004.
69. Rollins, B.J.: Chemokines. Blood 90: 909-928, 1997.
70. Benelli, R., Morini, M., Carrozzino, F., Ferrari, N., Minghelli, S., Santi, L., Cassatella, M., Noonan, D.M. and Albini, A.: Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J. 16: 267-269, 2002.
71. Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., Albini, A., Lowell, C., Berton, G., Noonan, D.M. and Cassatella, M.A.: CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J. Immunol. 172: 5034-5040, 2004.
72. Koch, A.E., Volin, M.V., Woods, J.M., Kunkel, S.L., Connors, M.A., Harlow, L.A., Woodruff, D.C., Burdick, M.D. and Strieter, R.M.: Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheum. 44: 31-40, 2001.
73. Keshamouni, V.G., Arenberg, D.A., Reddy, R.C., Newstead, M.J., Anthwal, S. and Standiford, T.J.: PPAR-gamma activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer. Neoplasia 7: 294-301, 2005.
74. Kayisli, U.A., Luk, J., Guzeloglu-Kayisli, O., Seval, Y., Demir, R. and Arici, A.: Regulation of angiogenic activity of human endometrial endothelial cells in culture by ovarian steroids. J. Clin. Endocrinol. Metab. 89: 5794-5802, 2004.
75. Kayisli, U.A., Guzeloglu-Kayisli, O. and Arici, A.: Endocrine-immune interactions in human endometrium. Ann. N. Y. Acad. Sci. 1034: 50-63, 2004.
76. Rogers, P.A., Gargett, C.E.: Endometrial angiogenesis. Angiogenesis. 2: 287-294, 1998.
77. Heryanto. B., Lipson, K.E. and Rogers, P.A.: Effect of angiogenesis inhibitors on oestrogen-mediated endometrial endothelial cell proliferation in the ovariectomized mouse. Reproduction 125: 337-346, 2003.
78. De, M. and Wood, G.W.: Influence of oestrogen and progesterone on macrophage distribution in the mouse uterus. J. Endocrinol. 126: 417-424, 1990.
79. Tibbetts, T.A., Conneely, O.M. and O'Malley, B.W.: Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol. Reprod. 60: 1158-1165, 1999.
80. Heryanto, B., Girling, J.E. and Rogers, P.A.: Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127: 613-620, 2004.
81. DeLoia, J.A., Stewart-Akers, A.M., Brekosky, J. and Kubik, C.J.: Effects of exogenous estrogen on uterine leukocyte recruitment. Fertil. Steril. 77: 548-554, 2002.
82. Raiter-Tenenbaum, A., Baranao, R.I., Etchepareborda, J.J., Meresman, G.F. and Rumi, L.S.: Functional and phenotypic alterations in peritoneal macrophages from patients with early and advanced endometriosis. Arch. Gynecol. Obstet. 261: 147-157, 1998.
83. Iwabe, T., Harada, T., Sakamoto, Y., Iba, Y., Horie, S., Mitsunari, M. and Terakawa, N.: Gonadotropin-releasing hormone agonist treatment reduced serum interleukin-6 concentrations in patients with ovarian endometriomas. Ferti.l Steril. 80: 300-304, 2003.
84. Awwad, J.T., Sayegh, R.A., Tao, X.J., Hassan, T., Awwad, S.T. and Isaacson, K.: The SCID mouse: an experimental model for endometriosis. Hum. Reprod. 14: 3107-3111, 1999.
85. Cohen, P. E. and Milligan, S. R.: Silastic implants for delivery of oestradiol to mice. J. Reprod. Fertil. 99: 219-223, 1993.
86. Thurston, G.., Suri, C., Smith, K., McClain, J., Sato, T.N., Yancopoulos, G.D. and McDonald, D.M.: Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511-2514, 1999.
87. Dizerega. G.S., Barber, D.L. and Hodgen, G.D.: Endometriosis: role of ovarian steroids in initiation, maintenance, and suppression. Fertil. Steril. 33: 649-653, 1980.
88. Lai, M.D., Jiang, M.J. and Wing, L.Y.: Estrogen stimulates expression of p21Waf1/Cip1 in mouse uterine luminal epithelium. Endocrine 17: 233-239, 2002.
89. Wing, L.Y.: Differential effects of sex steroids on uterine and renal ODC activity in ovariectomized rats. Life Sci. 47: 1261-1267, 1990.
90. Darai. E., Detchev, R., Hugol, D. and Quang, N.T.: Serum and cyst fluid levels of interleukin (IL) -6, IL-8 and tumour necrosis factor-alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum. Reprod. 18: 1681-1685, 2003.
91. Nisolle, M., Casanas-Roux, F. and Donnez, J.: Early-stage endometriosis: adhesion and growth of human menstrual endometrium in nude mice. Fertil. Steril. 74: 306-312, 2000.
92. Grümmer, R., Schwarzer, F., Bainczyk, K., Hess-Stumpp, H., Regidor, P-A., Schindler, A.E. and Winterhager, E.: Peritoneal endometriosis: validation of an in-vivo model. Hum. Reprod. 16: 1736-1743, 2001.
93. Engelhardt, E., Toksoy, A., Goebeler, M., Debus, S., Brocker, E.B., Gillitzer, R.: Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am. J. Pathol. 153: 1849-1860, 1998.
94. Leek, R.D. and Harris, A.L.: Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia 7: 177-189, 2002.
95. Arici, A., Tazuke, S.I., Attar, E., Kliman, H.J. and Olive, D.L.: Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol. Hum. Reprod. 2: 40-45, 1996.
96. Suzumori. N., Katano, K. and Suzumori, K.: Peritoneal fluid concentrations of epithelial neutrophil-activating peptide-78 correlate with the severity of endometriosis. Fertil. Steril. 81: 305-308, 2004.
97. Rossi, D. and Zlotnik, A.: The biology of chemokines and their receptors. Annu. Rev. Immunol. 18: 217-242, 2000.
98. McCourt, M., Wang, J. H., Sookhai, S. and Redmond, H.P.: Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg. 134: 1325-1332, 1999.
99. Maas, J.W., Calhaz-Jorge, C., ter Riet, G., Dunselman, G.A., de Goeij, A.F. and Struijker-Boudier, H.A.: Tumor necrosis factor-alpha but not interleukin-1 beta or interleukin-8 concentrations correlate with angiogenic activity of peritoneal fluid from patients with minimal to mild endometriosis. Fertil. Steril. 75: 180-185, 2001.
100. Mahnke, J.L., Dawood, M.Y., Huang, J.C.: Vascular endothelial growth factor and interleukin-6 in peritoneal fluid of women with endometriosis. Fertil. Steril. 73: 166-170, 2000.
101. Akoum, A., Kong, J., Metz, C. and Beaumont, M.C.: Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil. Steril. 77: 989-994, 2002.
102. D'Hooghe, T.M., Bambra, C.S., Xiao, L., Peixe, K. and Hill, J.A.: Effect of menstruation and intrapelvic injection of endometrium on inflammatory parameters of peritoneal fluid in the baboon (Papio anubis and Papio cynocephalus). Am. J. Obstet. Gynecol. 184: 917-925, 2001.
103. Cao, X., Yang, D., Song, M., Murphy, A. and Parthasarathy, S.: The presence of endometrial cells in the peritoneal cavity enhances monocyte recruitment and induces inflammatory cytokines in mice: implications for endometriosis. Fertil. Steril. 82 (S3): 999-1007, 2004.
104. De Leon, F.D., Vijayakumar, R., Rao, C.V. and Yussman, M.: Prostaglandin F2 alpha and E2 release by peritoneum with and without endometriosis. Int. J. Fertil. 33: 48-51, 1988.
105. Wu, M.H., Sun, H.S., Lin, C.C., Hsiao, K.Y., Chuang, P.C., Pan, H.A. and Tsai, S.J.: Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Mol. Hum. Reprod. 8: 1103-1110, 2002.
106. Noble, L.S., Takayama, K., Zeitoun, K.M., Putman, J.M., Johns, D.A., Hinshelwood, M.M., Agarwal, V.R., Zhao, Y., Carr, B.R. and Bulun, S.E.: Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J. Clin. Endocrinol. Metab. 82: 600-666, 1997.
107. Tsai, S.J., Wu, M.H., Lin, C.C., Sun, H.S. and Chen, H.M.: Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 86: 5765-5773, 2001.
108. Huang, S.P., Wu, M.S., Shun, C.T., Wang, H.P., Hsieh, C.Y., Kuo, M.L. and Lin, J.T.: Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. J. Biomed. Sci. 12: 229-41, 2005.
109. Efstathiou, J.A., Sampson, D.A., Levine, Z., Rohan, R.M., Zurakowski, D., Folkman, J., D'Amato, R.J. and Rupnick, M.A.: Nonsteroidal antiinflammatory drugs differentially suppress endometriosis in a murine model. Fertil. Steril. 83: 171-181, 2005.