| 研究生: |
劉雨欣 Liu, Yu-Sin |
|---|---|
| 論文名稱: |
不同鎳錳比例之無鈷富鋰層狀正極材料合成與鋅摻雜效應 Effect of Zinc Doping on Cobalt-free Lithium-rich Layered Oxide Cathodes with Different Ni/Mn Ratio |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 無鈷 、富鋰 、鋅摻雜 、過渡金屬離子比例 、層狀正極材料 |
| 外文關鍵詞: | Cobalt-free, Lithium-rich, Zinc Doping, TM Ratio, Layered Cathodes |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電動車與再生能源的發展帶動對於儲能裝置的需求,具有高能量密度的鋰離子電池因此被視為最具潛力的電池系統。在鋰離子電池中,正極材料除了在電壓與電容上扮演重要角色,也會大幅影響其製作成本,故如何在低成本的條件下開發出具有高能量密度的正極材料,是研究正極材料中十分重要的一環。無鈷富鋰層狀正極材料具有低成本、環境友善等特性,且能量密度可高達1000 Wh/kg,遠超越目前所有商用正極材料。然而,此種材料需倚賴高電壓下Li2MnO3的活化來提升其電容值,易引發不可逆的相轉變而使可用電容與平均電壓隨充放電循環迅速衰減,較差的導電性也使無鈷富鋰正極材料無法應用於高速充放電循環中。高鎳材料雖為目前層狀材料的發展趨勢,但相較於錳元素,鎳元素的價格高、地表含量低,故若能在富鋰正極材料中以較高含量的錳來取代鎳的使用,將可進一步降低成本並大幅提升可用電容量。此外,過去雖已有許多以離子摻雜改善無鈷富鋰層狀正極材料之結構穩定性的研究,但尚未有使用鋅離子進行摻雜。在本篇研究中,我們使用鋅離子摻雜於具有不同鎳錳比例的無鈷富鋰層狀正極材料中,低鎳/錳比例的無鈷富鋰層狀正極材料雖具有較高的放電比電容與能量密度,但維持率不如高鎳/錳比例的材料,會隨著充放電循環而快速衰減。透過系統性的研究,我們發現當使用適量鋅離子摻雜於低鎳/錳比例的無鈷富鋰層狀正極材料時,將可有效減緩不可逆相變化生成,使其在充放電循環中保有良好的電化學表現。具有高能量密度、高電化學穩定性,且低成本的高錳低鎳的無鈷富鋰正極材料,將可透過鋅離子摻雜而實現。
Due to the increasing demand on high energy density, more research is drawn to lithium-ion batteries (LIBs) in recent decades. Among all the cathodes used in LIBs, cobalt-free lithium-rich layered oxides (LLOs) not only have the highest energy density (over 1000 Wh/kg) but are cost-effective and eco-friendly. However, LLOs suffer from the layered-to-spinel phase transformation, which lead to severe voltage fading and capacity decay during cycling, inhibiting from the practical usage. In this research, cobalt-free LLOs were successfully synthesized by carbonate co-precipitation method. We systematically studied the effect of zinc doping in cobalt-free LLOs with different Ni/Mn ratios for the first time. We demonstrated that Zn2+ ions, used as pillar ions, effectively alleviated the capacity decay and voltage fading in cobalt-free LLOs with low Ni/Mn ratio. The energy density could be greatly improved from 750 Wh/kg to 870 Wh/kg, and the corresponding retention could be highly maintained within 50 cycles as well. A promising cathode material with high energy density, good stability, and low cost could thus be obtained by zinc doping in cobalt-free LLOs with low Ni/Mn ratio.
1 World Economic Forum. A Vision for a Sustainable Battery Value Chain in 2030. 2019. http://www3.weforum.org/docs/WEF_A_Vision_for_a_Sustainable_Battery_Value_Chain_in_2030_Report.pdf.
2 European Technology and Innovation Platform. Strategic Research Agenda for Batteries 2020. 2020.
https://ec.europa.eu/energy/sites/ener/files/documents/batteries_europe_strategic_research_agenda_december_2020__1.pdf.
3 Hussain, S. et al. Semiactive Hybrid Energy Management System: A Solution for Electric Wheelchairs. Electronics 8, 3, 345-359, 2019.
4 Miao, Y. et al. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 12, 6, 1074-1093, 2019.
5 Tarascon, J. M. & Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 414, 6861, 359-367, 2001.
6 Kim, T. et al. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. Journal of Materials Chemistry A 7, 7, 2942-2964, 2019.
7 Wang, X. et al. Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. Advanced Energy Materials 10, 12, 1903864, 2020.
8 Zheng, J. et al. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials 7, 6, 1601284, 2016.
9 Wang, C.-C. & Manthiram, A. Influence of Cationic Substitutions on the First Charge and Reversible Capacities of Lithium-Rich Layered Oxide Cathodes. Journal of Materials Chemistry A 1, 35, 10209-10217, 2013.
10 Wang, D. et al. Synthesize and Electrochemical Characterization of Mg-Doped Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material. Electrochimica Acta 107, 30, 461-466, 2013.
11 Zhao, J. et al. Synthesis and Electrochemical Characterization of Zn-Doped Li-Rich Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Material. Ceramics International 41, 9, 11396-11401, 2015.
12 Chen, M. et al. High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials 9, 14, 1803609, 2019.
13 Deng, D. et al. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Science & Engineering 3, 5, 385-418, 2015.
14 Liang, S. et al. Gel Polymer Electrolytes for Lithium Ion Batteries: Fabrication, Characterization and Performance. Solid State Ionics 318, 2-18, 2018.
15 Whittingham, M. S. et al. The Role of Ternary Phases in Cathode Reactions. Journal of The Electrochemical Society 123, 3, 315-320, 1976.
16 Whittingham, M. S. et al. Electrical Energy Storage and Intercalation Chemistry. Science 192, 4244, 1126-1127, 1976.
17 Mizushima, K. et al. LixCoO2 (0 < x < -1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 15, 6, 783-789, 1980.
18 Ozawa, K. et al. Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: the LiCoO2/C System. Solid State Ionics 69, 3, 212-221, 1994.
19 Megahed, S. & Scrosati, B. Lithium-ion Rechargeable Batteries. Journal of Power Sources 51, 1, 79-104, 1994.
20 Bonino, F. et al. A Disordered Carbon as a Novel Anode Material in Lithium-ion Cells. Advanced Materials 17, 6, 743-746, 2005.
21 Dimov, N. et al. Practical Silicon-Based Composite Anodes for Lithium-Ion Batteries: Fundamental and Technological Features. Journal of Power Sources 171, 2, 886-893, 2007.
22 Winter, M. & Besenhard, J. O. Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites. Electrochimica Acta 45, 1, 31-50, 1999.
23 Liu, F. et al. Selective Crystallization with Preferred Lithium-Ion Storage Capability of Inorganic Materials. Nanoscale Research Letters 7, 149, 2012.
24 Poizot, P. et al. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature 407, 6803, 496-499, 2000.
25 陳祐頎 et al. 鋰離子電池電解質 - 鋰離子傳遞的橋樑. 科學發展, 564, 16-20, 2019.
26 Mauger, A. et al. A Comprehensive Review of Lithium Salts and Beyond for Rechargeable Batteries: Progress and Perspectives. Materials Science and Engineering: R: Reports 134, 1-21, 2018.
27 Long, L. et al. Polymer Electrolytes for Lithium Polymer Batteries. Journal of Materials Chemistry A 4, 26, 10038-10069, 2016.
28 Xu, B. et al. Recent Progress in Cathode Materials Research for Advanced Lithium-Ion Batteries. Materials Science and Engineering R: Reports 73, 5-6, 51-65, 2012.
29 Lee, W. et al. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angewandte Chemie 59, 7, 2578-2605, 2020.
30 Ohzuku, T. & Makimura, Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-ion Batteries. Chemistry Letters 30, 7, 642-643, 2001.
31 Lee, M. H. et al. Synthetic Optimization of Li[Ni1/3Co1/3Mn1/3]O2 via Co-Precipitation. Electrochimica Acta 50, 4, 939-948, 2004.
32 Yabuuchi, N. & Ohzuku, T. Electrochemical Behaviors of LiCo1/3Ni1/3Mn1/3O2 in Lithium Batteries at Elevated Temperatures. Journal of Power Sources 146, 1, 636-639, 2005.
33 Liu, W. et al. Nickel-rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie 54, 15, 4440-4457, 2015.
34 Croy, J. R. et al. Next-Generation Lithium-Ion Batteries: The Promise of Near-Term Advancements. Material Research Society Bulletin 39, 5, 407-415, 2014.
35 Mohanty, D. et al. Understanding the Structure and Structural Degradation Mechanisms in High-voltage, Lithium-Manganese-Rich Lithium-Ion Battery Cathode Oxides: A review of Materials Diagnostics. Material Research Society Energy & Sustainability 2, 1, 1-24, 2015.
36 Thackeray, M. M. et al. Lithium Insertion into Manganese Spinels. Materials Research Bulletin 18, 4, 461-472, 1983.
37 Aurbach, D. et al. Capacity Fading of LixMn2O4 Spinel Electrodes Studied by XRD and Electroanalytical Techniques. Journal of Power Sources 81-82, 472-479, 1999.
38 Myung, S. T. et al. Nano-Crystalline LiNi0.5Mn1.5O4 Synthesized by Emulsion Drying Method. Electrochimica Acta 47, 15, 2543-2549, 2002.
39 Kim, J. H. et al. Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332. Chemistry of Materials 16, 5, 906-914, 2004.
40 Betz, J. et al. An Approach for Pre-Lithiation of Li1+xNi0.5Mn1.5O4 Cathodes Mitigating Active Lithium Loss. Journal of The Electrochemical Society 166, 15, 3531-3538, 2019.
41 Yin, S.-C. et al. Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society 125, 2, 326-327, 2003.
42 Barker, J. et al. Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4F. Journal of The Electrochemical Society 150, 10, A1394, 2003.
43 Padhi, A. K. et al. Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society 144, 4, 1188-1194, 1997.
44 Fisher, C. A. J. et al. Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior. Chemistry of Materials 20, 18, 5907-5915, 2008.
45 Laffont, L. et al. Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy. Chemistry of Materials 18, 23, 5520-5529, 2006.
46 Delmas, C. et al. Lithium Deintercalation in LiFePO4 Nanoparticles via a Domino-Cascade Model. Nature Materials 7, 8, 665-671, 2008.
47 Meng, Y. S. et al. Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 ≤ x ≤ 1/2) Compounds. Chemistry of Materials 17, 9, 2386-2394, 2005.
48 Thackeray, M. M. et al. Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. Journal of Materials Chemistry 17, 30, 3112-3125, 2007.
49 Bareño, J. et al. Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2. Chemistry of Materials 23, 8, 2039-2050, 2011.
50 Song, Y. et al. Insight into the Atomic Structure of Li2MnO3 in Li-Rich Mn-Based Cathode Materials and the Impact of its Atomic Arrangement on Electrochemical Performance. Journal of Materials Chemistry A 5, 22, 11214-11223, 2017.
51 Jarvis, K. A. et al. Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chemistry of Materials 23, 16, 3614-3621, 2011.
52 Yu, H. et al. Direct Atomic-Resolution Observation of Two Phases in the Li1.2Mn0.567Ni0.166Co0.067O2 Cathode Material for Lithium-Ion Batteries. Angewandte Chemie 52, 23, 5969-5973, 2013.
53 Bareno, J. et al. Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries. Advanced Materials 22, 10, 1122-1127, 2010.
54 Shukla, A. K. et al. Unravelling Structural Ambiguities in Lithium- and Manganese-Rich Transition Metal Oxides. Nature Communications 6, 8711, 2015.
55 Wang, J. et al. Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries. Advanced Energy Materials 6, 21, 1600906, 2016.
56 Yu, H. et al. High-Energy 'Composite' Layered Manganese-Rich Cathode Materials via Controlling Li2MnO3 Phase Activation for Lithium-Ion Batteries. Physical Cemistry Chemical Physics 14, 18, 6584-6595, 2012.
57 Johnson, C. S. et al. Anomalous Capacity and Cycling Stability of xLi2MnO3·(1−x)LiMO2 Electrodes (M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochemistry Communications 9, 4, 787-795, 2007.
58 Shunmugasundaram, R. et al. High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss. Chemistry of Materials 27, 3, 757-767, 2015.
59 Nayak, P. K. et al. Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2 • (1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling. Journal of The Electrochemical Society 161, 10, 1534-1547, 2014.
60 Manthiram, A. et al. Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials 6, 1, 1501010, 2016.
61 Zheng, J. et al. Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material. Chemistry of Materials 27, 4, 1381-1390, 2015.
62 Yan, P. et al. Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries. Chemistry of Materials 27, 3, 975-982, 2015.
63 Mohanty, D. et al. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion. Chemistry of Materials 26, 21, 6272-6280, 2014.
64 Gu, M. et al. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano 7, 1, 760-767, 2013.
65 Jang, D. H. & Oh, S. M. Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / LixMn2O4 Rechargeable Cells. Journal of The Electrochemical Society 144, 10, 3342-3348, 1997.
66 Gummow, R. J. et al. Improved Capacity Retention in Rechargeable 4 V Lithium/ Lithium-Manganese Oxide (Spinel) Cells. Solid State Ionics 69, 1, 59-67, 1994.
67 Robertson, A. D. & Bruce, P. G. Mechanism of Electrochemical Activity in Li2MnO3. Chemistry of Materials 15, 10, 1984-1992, 2003.
68 Goodenough, J. B. & Kim, Y. Challenges for Rechargeable Li Batteries. Chemistry of Materials 22, 3, 587-603, 2009.
69 Castel, E. et al. Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3 · (1–x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries. Chemistry of Materials 26, 17, 5051-5057, 2014.
70 Cho, D.-H. et al. Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2. Journal of The Electrochemical Society 161, 6, 920-926, 2014.
71 Hy, S. et al. Direct in Situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). Journal of American Chemical Society 136, 3, 999-1007, 2014.
72 Bai, Y. et al. The Kinetics of Li-Ion Deintercalation in the Li-Rich Layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 Studied by Electrochemical Impedance Spectroscopy and Galvanostatic Intermittent Titration Technique. Electrochimica Acta 109, 355-364, 2013.
73 Yu, X. et al. Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials. Advanced Energy Materials 4, 5, 1300950, 2014.
74 Zheng, J. et al. Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2. Journal of The Electrochemical Society 160, 11, 2212-2219, 2013.
75 Liu, Y. et al. Precise Surface Engineering of Cathode Materials for Improved Stability of Lithium-Ion Batteries. Small 15, 32, 1901019, 2019.
76 Chen, Z. et al. Role of Surface Coating on Cathode Materials for Lithium-Ion Batteries. Journal of Materials Chemistry 20, 36, 7606-7612, 2010.
77 Zuo, D. et al. Recent Progress in Surface Coating of Cathode Materials for Lithium Ion Secondary Batteries. Journal of Alloys and Compounds 706, 5, 24-40, 2017.
78 Guan, P. et al. Recent Progress of Surface Coating on Cathode Materials for High-Performance Lithium-Ion Batteries. Journal of Energy Chemistry 43, 220-235, 2020.
79 Kong, J.-Z. et al. Improved Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material Coated with Ultrathin ZnO. Journal of Alloys and Compounds 694, 15, 848-856, 2017.
80 Gao, J. & Manthiram, A. Eliminating the Irreversible Capacity Loss of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode by Blending with Other Lithium Insertion Hosts. Journal of Power Sources 191, 2, 644-647, 2009.
81 Wu, F. et al. Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries. Nano Letters 14, 6, 3550-3555, 2014.
82 Liu, J. et al. Carbon-Coated High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes. Electrochemistry Communications 12, 6, 750-753, 2010.
83 Wu, Y. et al. Surface Modification of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13O2 Cathodes by AlPO4. Journal of The Electrochemical Society 155, 9, A635, 2008.
84 Ma, Y. et al. Double-Shell Li-Rich Layered Oxide Hollow Microspheres with Sandwich-Like Carbon@Spinel@Layered@Spinel@Carbon Shells as High-Rate Lithium Ion Battery Cathode. Nano Energy 59, 184-196, 2019.
85 Oh, P. et al. Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithium‐Ion Battery. Advanced Energy Materials 11, 15, 2003197, 2020.
86 Zuo, W. et al. Li-Rich Cathodes for Rechargeable Li-Based Batteries: Reaction Mechanisms and Advanced Characterization Techniques. Energy & Environmental Science 13, 12, 4450-4497, 2020.
87 Li, H. et al. Stabilizing Nickel-Rich Layered Oxide Cathodes by Magnesium Doping for Rechargeable Lithium-Ion Batteries. Chemical Science 10, 5, 1374-1379, 2019.
88 Chen, G. et al. Cation and Anion Co-Doping Synergy to Improve Structural Stability of Li- and Mn-Rich Layered Cathode Materials for Lithium-Ion Batteries. Nano Energy 57, 157-165, 2019.
89 Liang, Y. et al. Synthesis and Electrochemical Characterization of Mg-Al Co-Doped Li-Rich Mn-Based Cathode Materials. New Journal of Chemistry 43, 30, 12004-12012, 2019.
90 Phattharasupakun, N. et al. Impact of Cr Doping on the Voltage Fade of Li-Rich Mn-Rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 Positive Electrode Materials. Journal of The Electrochemical Society 167, 16, 160545, 2020.
91 Chen, R. et al. Advanced Cathode Materials for Lithium-Ion Batteries Using Nanoarchitectonics. Nanoscale Horizons 1, 6, 423-444, 2016.
92 Ramakrishnan, S. et al. Extended Interfacial Stability through Simple Acid Rinsing in a Li-Rich Oxide Cathode Material. Journal of the American Chemical Society 142, 18, 8522-8531, 2020.
93 Ji, X. et al. A Review on Progress of Lithium-Rich Manganese-Based Cathodes for Lithium Ion Batteries. Journal of Power Sources 487, 1, 229362, 2021.
94 Han, J.-G. et al. Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 7, 15, 8319-8329, 2015.
95 Xiao, Z. et al. Lithium Bis(oxalate)borate Additive in the Electrolyte to Improve Li-Rich Layered Oxide Cathode Materials. Materials Chemistry Frontiers 4, 6, 1689-1696, 2020.
96 Tan, S. et al. Tris(hexafluoro-iso-propyl)phosphate as an SEI-Forming Additive on Improving the Electrochemical Performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 Cathode Material. Journal of The Electrochemical Society 160, 2, 285-292, 2012.
97 Li, S. et al. Enhanced Structural Stability of Boron-Doped Layered@Spinel@Carbon Heterostructured Lithium-Rich Manganese-Based Cathode Materials. ACS Sustainable Chemistry & Engineering 8, 25, 9311-9324, 2020.
98 Lee, D. K. et al. High Capacity Li[Li0.2Ni0.2Mn0.6]O2 Cathode Materials via a Carbonate Co-Precipitation Method. Journal of Power Sources 162, 2, 1346-1350, 2006.
99 UseScience.
https://scientificservices.eu/item/precision-etching-and-coating-system-pecs-gatan/1558
100 國立成功大學核心設施中心.
https://ctrmost.web2.ncku.edu.tw/
101 Metrohm.
https://www.metrohm.com/zh-tw/products-overview/electrochemistry/
102 武漢市藍電電子股份有限公司.
http://www.whland.com/
103 Xiang, Y. et al. Effects of Synthesis Conditions on the Structural and Electrochemical Properties of the Li-Rich Material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the Solid-State Method. Electrochimica Acta 91, 28, 214-218, 2013.
104 Pimenta, V. et al. Synthesis of Li-Rich NMC: A Comprehensive Study. Chemistry of Materials 29, 23, 9923-9936, 2017.
105 Lin, J. et al. Li-rich Layered Composite Li[Li0.2Ni0.2Mn0.6]O2 Synthesized by a Novel Approach as Cathode Material for Lithium Ion Battery. Journal of Power Sources 230, 15, 76-80, 2013.
106 Ohzuku, T. et al. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society 140, 7, 1862-1870, 1993.
107 Kang, S. H. et al. Interpreting the Structural and Electrochemical Complexity of 0.5Li2MnO3 · 0.5LiMO2 Electrodes for Lithium Batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). Journal of Materials Chemistry 17, 20, 2069-2077, 2007.
108 Hy, S. et al. Performance and Design Considerations for Lithium Excess Layered Oxide Positive Electrode Materials for Lithium Ion Batteries. Energy & Environmental Science 9, 6, 1931-1954, 2016.
109 Wang, D. et al. Synthesis of High Capacity Cathodes for Lithium-Ion Batteries by Morphology-Tailored Hydroxide Co-Precipitation. Journal of Power Sources 274, 15, 451-457, 2015.
110 Chong, S. et al. Effect of Valence States of Ni and Mn on the Structural and Electrochemical Properties of Li1.2NixMn0.8−xO2 Cathode Materials for Lithium-Ion Batteries. RSC Advances 6, 59, 53662-53668, 2016.
111 Nesbitt, H. W. & Banerjee, D. Interpretation of XPS Mn(2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation. American Mineralogist 83, 3-4, 305-315, 1998.
112 Xiao, L. et al. Effects of Structural Defects on the Electrochemical Activation of Li2MnO3. Nano Energy 16, 143-151, 2015.
113 Spahr, M. E. et al. Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials. Journal of The Electrochemical Society 145, 4, 1113-1121, 1998.
114 Wu, F. et al. Effect of Ni(2+) Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials. ACS Applied Material and Interfaces 7, 14, 7702-7708, 2015.
115 Ates, M. N. et al. A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries. Journal of The Electrochemical Society 161, 3, 355-363, 2014.
116 Suresh, P. et al. Characterization of Zn- and Fe-Substituted LiMnO2 as Cathode Materials in Li-Ion Cells. Journal of Power Sources 161, 2, 1307-1313, 2006.
117 Choi, A. et al. In Situ Electrochemical Zn2+-Doping for Mn-Rich Layered Oxides in Li-Ion Batteries. ACS Applied Energy Materials 2, 5, 3427-3434, 2019.
118 Liu, J. K. & Fan, L. Z. LiFePO4/Porous Carbon Nanocomposite Cathode Material for Lithium Ion Batteries. Materials Science Forum 722, 11-16, 2012.
119 Meng, Y. et al. A Comparative Study on LiFePO4/C by In-Situ Coating with Different Carbon Sources for High-Performance Lithium Batteries. Electrochimica Acta 261, 20, 96-103, 2018.
校內:2026-08-25公開