| 研究生: |
洪挺凱 Hung, Ting-Kai |
|---|---|
| 論文名稱: |
利用陽極氧化及光化學氣相法沉積披覆氧化層以抑制矽鍺金半金近紅外線光偵測器之暗電流 Suppressing the Dark Current in Si/SiGe Heterostructural MSM Infrared Photodetectors Achievable through Anodic and Photochemical Vapor-Deposited Oxidation/Passivation Techniques |
| 指導教授: |
莊文魁
Chuang, Ricky Wenkuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 光化學氣相沉積 、矽鍺 、金半金 、光檢測器 、陽極氧化 |
| 外文關鍵詞: | SiGe, MSM, photodetector, anodic oxidation, photo-CVD |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,使用超高真空化學氣相沉積法將矽鍺層成長在矽基板上,並作為光檢測器的吸收層。由於鍺與矽之間存在有百分之四的晶格不匹配,所以當矽鍺中的鍺含量超過百分之三十時,其臨界厚度將會小於100 nm。但是在我們研究中所使用的矽鍺試片,其矽鍺層厚度大約在200 nm左右,這個值大於理論的臨界厚度許多。在霍爾量測及穿透式電子顯微鏡的分析結果中,矽鍺層存在許多缺陷及晶格錯位。這些結果造成我們所製作而成的矽鍺金半金光檢測器擁有相當高的暗電流。
為了抑制暗電流以提升矽鍺金半金光檢測器的表現,我們採用陽極氧化法和光化學氣相沉積法在矽鍺表面製作披覆氧化層。並以試片同時製作金氧半電容器和金氧半光檢測器,藉此比較金氧半光檢測器之電流電壓特性與金氧半電容器之介面態位密度的關係。結果發現,元件壓抑暗電流的能力與介面態位密度確實有關。藉由比較陽極氧化法及光化學氣相沉積法的實驗結果可發現,採用陽極氧化施以低的初始電流密度及適當的氧化時間所製作的氧化層試片擁有較低的介面態位密度,並且擁有較佳的暗電流抑制能力。因此,相較於光化學氣相沉積法,陽極氧化是一個更適合於提升矽鍺金半金光檢測器功能的方法。
In this thesis, Si0.68Ge0.32 epi-layers were grown by ultra-high vacuum chemical vapor deposition (UHV-CVD) and used as the absorption layers of photodetectors. Because there were 4% lattice mismatch between Si and Ge, the critical thickness of SiGe epi-layer was less than 100 nm when Ge content was higher than 30%. The thickness of SiGe epi-layer used in our research was around 200 nm, which was much larger than theoretical critical thickness. According to the Hall measurement and TEM analyses, many dislocations and defects were observed in the SiGe layers. Such a result caused a large dark current in the fabricated SiGe MSM photodetector.
We chose anodic oxidation method and photo-CVD system to form different oxide passivation layers on the SiGe surface, thus suppress the dark currents and enhance the performance of SiGe MSM photodetectors. The oxide passivated samples were also fabricated to Au/oxide/SiGe MOS capacitors to calculate the interface state densities. By comparing the I-V characteristics of SiGe MIS photodetectors with C-V results of MOS capacitors, it was found that the performance in dark current suppression was relative to the calculated interface state density. Among the two passivation methods, the devices fabricated by anodic oxidation with low initial current density and proper growth time could have lower interface state density, and they also had better performance in dark current suppression. Anodic oxidation method was best suited for the functional enhancement of SiGe MSM photodetectors.
Chapter 1
[1]Soref, R.A., “Silicon-based optoelectronics”, Proceedings of the IEEE, Vol.81, Issue 12, pp.1687-1706, 1993
[2]Mike Salib, Ling Liao, Richard Jones, Mike Morse, Ansheng Liu, Dean Samara-Rubio, Drew Alduino, Mario Paniccia, Corporate Technology Group, Intel Corporation, “Silicon Photonics”, Intel Technology Journal., Vol.08, Issue 02 Published, May 10, 2004
[3]S. M. Sze, “High-Speed Semiconductor Devices”, pp.28-33, 1990
[4]M. Bauer, C. Schllhorn, K. Lyutovich, E. Kasper, M. Jutzi, M. Berroth, “High Ge content photodetectors on thin SiGe buffers” Materials Science and Engineering, B 89, pp.77-83, 2002
[5]C. Li, C. J. Huang, B. Cheng, Y. Zuo, J. Yu, Q. Wang, “SiGe/Si resonant-cavity-enhanced photodetectors for 1.3 µm operation fabricated using wafer bonding techniques”, Journal of Applied Physics, Vol. 92, pp.1718, 2002
[6]A. Vonsovici, L. Vescan, R. Apetz, A. Koster, K. Schmidt, ”Room temperature photocurrent spectroscopy of SiGe/Si p-i-n photodiodes grown by selective epitaxy”, IEEE Trans.Electron Dev., Vol.45, pp.538-42, 1998
[7]J.J. Ho, Y.K. Fang, K.H. Wu, C.S. Tsai, “High-speed amorphous silicon germanium infrared sensors prepared on crystalline silicon substrates”, Appl. Phys. Lett., Vol.70, pp.826-8, 1997
[8]C. W. Liu, Member, IEEE, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A Novel Photodetector Using MOS Tunneling Structures", IEEE Electron Devices Leters, Vol. 21, pp.307-9, 2000
[9]H. Temkin, A. Atreasyan, N.A. Olsson, T.P. Pearsall, J.C. Bean”, Ge0.6Si0.4 rib waveguide avalanche photodetectors for 1.3 µm operation,“ Appl. Phys. Lett., Vol.49, pp.809-11, 1986
[10]S. J. Koester, B. U. Klepser, J. O. Chu, D. Kuchta, K. Ismail, “1.1 GHz MSM photodiodes on relaxed Si1-xGex grown by UHV-CVD”, Device Research Conference, pp.60-1, 1998
[11]J. Rappich, “Anodic oxidation as a low thermal budget process for passivation of SiGe”, Solid State Electronics, Vol.45, pp.1465-1470, 2001
[12]J. Rappich, W. Fussel, ”Anodic passivation of SiGe”, Microelectronics Reliability, Vol.40, pp.825-7, 2000
[13]J. Rappich, I. Sieber, R. Knippelmeyer, “Enhanced Passivation of the Oxide/SiGe Interface of SiGe Epitaxial Layers on Si by Anodic Oxidation”, Electrochemical and Solid-State Letters, Vol.4, Issue 3, B11-B13, 2001
[14]J. Rappich , “Smoothing, passivation and re-passivation of silicon surfaces by anodic oxidation: a low thermal budget process”, Microelectronics Reliability, Vol.40, pp.815-9, 2000
Chapter 2
[1]E. H. Rhoderick, R. H. Williams, “Metal-Semiconductor Contacts”, Chapter 2, 1998
[2]S. M. Sze, “Semiconductor Device Physics and Technology”, p.160, 1985
[3]D. A. Neamen, “Semiconductor Physics and Devices Basic Principles”, 3rd Edition, p.327-328, 2003
[4]S. M. Sze, “Semiconductor Device Physics and Technology”, p.278, 1985
[5]S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) Structures”, Solid-State Electronics, Vol.14, pp.1209, 1971
[6]P. Bhattacharya, “Semiconductor Optoelectronic Devices”, 2nd Edition, 1997
[7]S. V. Averine, Y. C. Chan, Y. L. Lam, “Geometry Optimization of Interdigitated Schottky-Barrier Metal-Semiconductor-Metal Photodiode Structures”, S. S. E., Vol.45, pp.441-446, 2001
[8]Burm J, Litvin KI, Schaff WJ, Eastman LF, “Optimization of High-speed Metal-Semiconductor-Metal Photodetectors”, IEEE Photon. Technol. Lett., Vol.6, No.6, pp.722-724, 1994
[9]M. S. Tyagi, “Metal-Semiconductor Schottky Barrier Junctions and Their Application”, pp.20, 1984
[10]E. H. Hall, “On a New Action of the Magnet on Electric Currents”, Amer. J. Math., Vol.2, pp.287-292, 1879
[11]D. A. Neamen, “Semiconductor Physics and Devices Basic Principles”, 3rd Edition, p.474, 2003
[12]D. K. Schroder, “Semiconductor Material and Device Characterization”, 2nd Edition, p.672, 1998
[13]P. Auger, “On the Compound Photoelectric Effect”, J. Phys. Radium, Vol.6, pp.205-208, 1925
[14]D. K. Schroder, “Semiconductor Material and Device Characterization”, 2nd Edition, p.659-665, 1998
Chapter 4
[1]F. K. LeGoues, R. Rosenberg, T. nguyen, F. Himpsel, B. S. Meyerson, “Oxidation Studies of SiGe”, Journal of Applied Physics, Vol.65, pp.1724, 1989
[2]J. Rappich, W. Fussel, ”Anodic passivation of SiGe”, Microelectronics Reliability, Vol.40, pp.825-7, 2000
[3]C. Caragianis, Y. Shigesato, D. C. Paine, “Low Temperature Passivation of Si1−xGex Alloys by Dry High Pressure Oxidation”, J. Electron. Mater., Vol.23, pp.883, 1994
[4]M. Seck, R. Devine, C. Hernandez, Y. Campidelli, J.-C. Dupuy, “Study of Ge Bonding and Distribution in Plasma Oxides of Si1 – xGex Alloys”, Applied Physics Letters, Vol.72, pp.2748 ,1998
[5]O. Vancuawenberghe, O. C. Hellman, N. Herbot, W. J. Tan, “New SiGe Dielectrics Grown at Room Temperature by Low-Energy Ion Beam Oxidation and Nitridation”, Applied Physics Letters, Vol.59, pp.2031, 1991
[6]G. Mende, H. Flietner, “Optimization of Anodic Silicon Oxide Films for Low Temperature Passivation of Silicon Surfaces”, J. Electrochem. Soc., Vol.140, pp.180, 1993
[7]G. Mende, E. Hensel, F. Fenske, H. Flietner, “The Electrophysical Properties of Anodically Grown Silicon Oxide Films”, Thin Solid Films, Vol.168, pp.51, 1989
[8]S. K. Ghandhi, “VLSI Fabrication Principles”, 2nd Edition, 1994
[9]S. A. Campbell, H. J. Lewerenz, “Semiconductor Micromachining”, 1998
[10]J. Rappich, W. Fussel, ”Anodic passivation of SiGe”, Microelectronics Reliability, Vol.40, pp.825-7, 2000
[11]G. Mande, S. A. Campbell, H. J. Lewerenz, “Semiconductor Micromachining – Techniques and Industrial Application”, Vol.2, p.263, 1998
[12]Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices”, First published 1998, Reprinted 1999, 2000, p.90-106
[13]D. K. Schroder, “Semiconductor Material Device and Characterization”, pp.373-377, 1998
[14]W. A. Hill, C. C. Coleman, “A Single Frequency Approximation for Interface-State Density Determination”, Solid-State Electron., Vol.23, pp.987-993, 1980
[15]A. Tolpadi, R. S. Srivastava, “Single-frequency Method for the Determination of Interface State Density”, American Institude of Physics, Vol.63, pp.5419-5425, 1992
Chapter 5
[1]Y. Z. Chiou, “On the Annealing Effects of GaN Metal-Insulator- Semiconductor Capacitors with Photo-Chemical Vapor Deposition Oxide Layers”, Japanese Journal of Applied Physics, Vol.45, pp.3045-3048, 2006
Chapter 6
[1]J. D. Hwang, C. Y. Kung, “Liquid Phase Deposition Silicon Dioxide for Surface Passivation in SiGe Metal-Semiconductor-Metal Photodetectors”, Thin Solid Films, Vol.515, pp.4049, 2007
[2]J. D. Hwang, W. T. Chang, “Suppressing the Dark Current of Metal-Semiconductor-Metal SiGe/Si Heterojunction Photodetector by Using Asymmetric Structure”, Thin Solid Films, Vol.515, pp.3837, 2007
[3]J. D. Hwang, Y. H. Chen, C. Y. Kung, J. C. Liu, “Effects of Hydrogenated-Amorphous-Silicon Layer on the Performance of SiGe Metal-Semiconductor-Metal Photodetectors”, Journal of The Electrochemical Society, Vol.154, Issue11, pp. J365-J368, 2007
[4]L. Vivien, M. Rouvire, “High Speed and High Responsivity Germanium Photodetector Integrated in a Silicon-On-Insulator Microwaveguide”, OPTICS EXPRESS, Vol.15, No.15, pp.9843, 2007
[5]L. Vivien, D. Marris-Morini, “Metal-Semiconductor-Metal Ge Photodetectors Integrated in Silicon Waveguides”, Applied Physics Letters, Vol. 92, 2008
[6]L. Vivien, M. Rouvire, “Ge Photodetectors Integrated in Si Waveguides”, Proc. of SPIE, Vol. 6898, 2008