| 研究生: |
朱嗣堯 Chu, Szu-Yao |
|---|---|
| 論文名稱: |
整合GIPD天線之60-GHz四路結合功率放大器與V-及W-band之毫米波功率放大器研製 60-GHz CMOS 4-way Combining Power Amplifier Integrated with GIPD Antenna and V- and W-band Millimeter-Wave Power Amplifier |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | V-band 、W-band 、CMOS 、GIPD 、功率放大器 、主動天線 |
| 外文關鍵詞: | CMOS, GIPD, Millimeter-Wave(MMW), V-band, W-band, Active Antenna, Power Amplifier |
| 相關次數: | 點閱:118 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製整合GIPD天線之CMOS 60-GHz功率放大器、V-band堆疊式功率放大器及整合W-band收發開關之 94-GHz寬頻放大器,皆採用TSMC 90-nm GUTM CMOS製程進行設計。論文第一部分為功率放大器簡介,概述功率放大器各項效能參數並介紹各種架構。論文第二部分為整合GIPD天線之CMOS 60-GHz功率放大器晶片設計,此設計採用四路變壓器功率結合,藉由差動輸出減輕毫米波頻段變壓器功率結合器所面臨之各輸入埠阻抗不平衡問題,以降低結合器損耗,輸出則藉覆晶技術(flip chip)由金凸塊(gold bump)異質整合一高效率GIPD on-chip雙埠韋瓦第天線,利用差動天線來完成終端空間功率結合,整體結合器損耗有不錯之表現。論文第三部分為V-band堆疊式功率放大器,該放大器利用電晶體堆疊來提升輸出功率, 在不使用功率結合器之情況下成功提升輸出功率,因此也擁有小面積優勢。論文第四部分為W-band寬頻功率放大器,設計上採用串接五級疊接(cascode)架構並搭配A類放大器之偏壓形式實現,同時藉由增益提升技巧(gain boosting)的方式使其具有較佳功率增益來減輕其它發射機前端電路的設計負擔,並利用各級級間匹配控制增益分佈,使其整體3-dB增益頻寬達到20%,且在其頻寬內,輸入及輸出返回損耗皆大於10-dB。電路設計以Agilent ADS與全波電磁模擬軟體進行模擬,量測部份皆是採用on-wafer方式進行,根據欲量測參數特性之不同,相關量測架設方式亦有所調整。
This thesis presents the design of millimeter-wave (MMW) RF active antenna as well as MMW V- and W-band power amplifiers. In the 60 GHz active antenna, the heterogeneous integration technique implemented by standard TSMC 90-nm GUTM CMOS process and ASFC GIPD process is adopted for addressing the low radiation efficiency issue of on-chip CMOS antenna. It utilizes flip-chip technique with gold bump to integrate the different processes. For enhancing equivalent isotropically radiated power (EIRP), 4-way combining power amplifier is designed by using distributed active transformer as combiner. In order to improving power added efficiency (PAE) of the PA, differential output is adopted to mitigate the input port mismatched of DAT in MMW band, and it uses differential input GIPD antenna to achieve final space combining to avoid use of additional balun. In a 60 GHz CMOS power amplifier design, the stacked structure with using inter-node matching network is employed. For chip size ctrtria, the adopted stacked structure can improve the output power without using large size output combiner. The power gain and power added efficiency performance is significantly improved by inter-node matching technique. In the design of a W-band CMOS power amplifier, a five stage common-source (CS) cascade structure with gain-boosting technique is adopted for power gain, 3-dB gain bandwidth, and gain flatness criteria. In order to achieve 20% bandwidth and enough gain flatness, it arranges the gain to frequency distribution of each stage by inter-stage matching network. The measured performances of the designed MMW RFICs are all performed by using the on-wafer measurement. Simulation and measurement results are compared and discussed.
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online].
Available: http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online].
Available: http://www.ieee802.org/15
[4] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, no.1, pp. 237–246, Jan. 2008.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no.12, pp. 2667–2681, Dec. 2010.
[6] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Norwood, MA: Artech House, 2006.
[7] 邱煥凱,射頻功率放大器設計講義,經濟部工業局半導體學院計畫短期國家晶片系統設計中心短期專業訓練課程,民國一百年。
[8] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[9] Guillermo Gonzalez, Microwave transistor amplifiers: analysis and design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996
[10] 蔡兆璿,Ka頻段寬頻功率放大器設計,台灣大學電機資訊學院電信工程學研究所,民國一百零一年。
[11] L. Samoska, Kun-You Lin, Huei Wang, Yun-Ho Chung, Michael Aust, Sander Weinreb, Douglas Dawson., "On the stability of millimeter-wave power amplifiers," 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Seattle, WA, USA, 2002, pp. 429-432 vol.1.
[12] 蕭元鴻,互補式金氧半場效電晶體毫米波頻段功率放大器研製與效率改善之研究,台灣大學電機資訊學院電信工程學研究所,民國一百零一年。
[13] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華科技,2008。
[14] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, Inc., 1998.
[15] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 562-636.
[16] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[17] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1129–1132.
[18] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008.
[19] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[20] 李子瑋,CMOS毫米波功率放大器及94-GHz CMOS次諧波單混頻器射頻收發機之整合晶片設計研究,民國一百零五年。
[21] Edwin H. Colpitts, “System for the transmission of intelligence,” U.S. Patent 1 137 384, April, 27, 1915.
[22] P. C. Hsu, C. Nguyen and M. Kintis, "Uniplanar broad-band push-pull FET amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 12, pp. 2150-2152, Dec 1997.
[23] S. Toyoda, "Push-pull power amplifiers in the X band," 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 1997, pp. 1433-1436 vol.3.
[24] Z. Wang, "Wideband class AB (push-pull) current amplifier in CMOS technology," in Electronics Letters, vol. 26, no. 8, pp. 543-545, 14 April 1990.
[25] R. Ramachandran, S. Moghe, J. Girimaji and A. Podell, "6 to 18 GHz single-ended and push-pull MMIC amplifiers for high-gain modules," IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers., New York, NY, USA, 1988, pp. 15-18.
[26] M. Chongcheawchamnan, K. S. Ang, J. N. H. Wong and I. D. Robertson, "A Push-Pull Power Amplifier Using Novel Impedance-Transforming Baluns," 2000 30th European Microwave Conference, Paris, France, 2000, pp. 1-4.
[27] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[28] K. H. An, Ockgoo Lee, Hyungwook Kim, Dong Ho Lee, Jeonghu Han, Ki Seok Yang, Joy Laskar, et al."Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[29] Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1365-1374, May 2012.
[30] J. R. Long, "Monolithic transformers for silicon RF IC design," in IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[31] Charles. K. Alexander, Matthew. N. O. Sadiku, Fundamentals of Electric Circuits, 6rd ed., McGraw-Hill Higher Education, 2009.
[32] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer- a new power-combining and impedance-transformation technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan 2002.
[33] M. Danesh, J. R. Long, R. A. Hadaway and D. L. Harame, "A Q-factor enhancement technique for MMIC inductors," 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 1998, pp. 183-186 vol.1.
[34] J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos and J. Bausells, "Improvement of the quality factor of RF integrated inductors by layout optimization," in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 76-83, Jan 2000.
[35] C. C. Lim et al., "Fully Symmetrical Monolithic Transformer (True 1 : 1) for Silicon RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2301-2311, Oct. 2008.
[36] C. W. Tseng and Y. J. Wang, "A 60 GHz 19.6 dBm Power Amplifier With 18.3% PAE in 40 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 121-123, Feb. 2015.
[37] J. Oh, B. Ku and S. Hong, "A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2662-2669, July 2013.
[38] J. F. Yeh, J. H. Tsai and T. W. Huang, "A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1280-1290, March 2013.
[39] C. F. Chou, Y. H. Hsiao, Y. C. Wu, Y. H. Lin, C. W. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[40] K. Y. Wang, T. Y. Chang and C. K. Wang, "A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 260-262.
[41] Kian Sen Ang and I. D. Robertson, "Analysis and design of impedance-transforming planar Marchand baluns," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 2, pp. 402-406, Feb 2001.
[42] 王崑印,應用於車用雷達之互補式金氧半場效電晶體功率放大器設計,台灣大學電機資訊學院電子工程學研究所,民國一百零一年。
[43] F. Zhang, F. S. Zhang, G. Zhao, C. Lin and Y. C. Jiao, "A Loaded Wideband Linearly Tapered Slot Antenna with Broad Beamwidth," in IEEE Antennas and Wireless Propagation Letters, vol. 10, no., pp. 79-82, 2011.
[44] Y. Yao, M. Liu, W. Chen and Z. Feng, "Analysis and design of wideband widescan planar tapered slot antenna array," in IET Microwaves, Antennas & Propagation, vol. 4, no. 10, pp. 1632-1638, October 2010.
[45] M. Sonkki, et al.", "Wideband Dual-Polarized Cross-Shaped Vivaldi Antenna," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2813-2819, June 2015.
[46] C. A. Balanis, Antenna Theory Analysis and Design. New York, Wiley, 2005.
[47] M. Bassi, et al."A 40–67 GHz Power Amplifier with 13 dBm Psat and 16% PAE in 28 nm CMOS LP," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1618-1628, July 2015.
[48] Y. Kim and Y. Kwon, "Analysis and Design of Millimeter-Wave Power Amplifier Using Stacked-FET Structure," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 691-702, Feb. 2015.
[49] H. T. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
[50] 林建志,毫米波功率結合技術之CMOS功率放大器及60-GHz CMOS次諧波射頻收發機前端之研製,民國一百零三年。
[51] Po-Han Chiang, Wei-Heng Lin, Tzu-Yuan Huang and H. Wang, "A 53 to 84 GHz CMOS power amplifier with 10.8-dBm output power and 31 GHz 3-dB bandwidth," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-3
[52] J. L. Kuo, Z. M. Tsai, K. Y. Lin and H. Wang, "A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 45-47, Jan. 2009.
[53] 陳平,應用於微波與毫米波之矽基分佈式放大器的研製,民國九十九年。
[54] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901–1908, Sep. 2005.
[55] H.-H. Hsieh and L.-H. Lu, “A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no.8, pp.1895–1902, Aug. 2009.
[56] 郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一零一年。
[57] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[58] D. Chowdhury, P. Reynaert and A. M. Niknejad, "Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2733-2744, Oct. 2009.
[59] W. L. Chan and J. R. Long, "A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply," in IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 554-564, March 2010.
[60] U. R. Pfeiffer and D. Goren, "A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 857-865, May 2007.
[61] Y. N. Jen, J. H. Tsai, T. W. Huang and H. Wang, "Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1637-1646, July 2009.