| 研究生: |
陳祐萱 Chen, Yu-Hsuan |
|---|---|
| 論文名稱: |
G.hn寬頻電力線通訊系統前導訊號之接收處理設計 Design of the Receiving Process for the Preamble of G.hn Broadband Power Line Communication Systems |
| 指導教授: |
蘇賜麟
Su, Szu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 電力線通訊 、前導訊號 、多重路徑衰減 、隨機脈衝雜訊 、能量偵測 |
| 外文關鍵詞: | PLC, Preamble, Multipath Fading, Random Impulse Noise, Energy Detection |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力線通訊在家庭數位化、智慧電網(Smart Grid)系統應用中扮演重要角色,但此系統承受多種不友善通道及雜訊的考驗,其中以時變性多路徑衰減和隨機脈衝雜訊為主要影響,因此在以電力線為通訊媒介的系統設計多以降低此二者之干擾為首要議題。
本論文參照寬頻電力線G.hn (Gigabit Home Networking)標準規格,在電力線通道與脈衝雜訊干擾並存時,探討系統利用前導訊號(Preamble)進行訊號偵測、通道估測以及訊框同步之接收處理設計技術。本論文透過數學模型推導與模擬分析,比較能量偵測和相關性偵測兩種演算法執行訊號偵測的系統性能,同時考慮脈衝雜訊下採用簡易抑制脈衝雜訊方式以提升訊號偵測的可靠度。本論文系統模擬結果顯示: 能量偵測技術不只複雜度低,並且可快速在單一前導訊號內完成訊號偵測,而其剩餘較多的前導訊號可用於提升電力線通道估測的準確度(降低MSE),以達到較佳的系統通訊品質。
In home digitalization system and Smart Grid, power line communication (PLC) plays an important role. However, this system suffers from time-variant channel and noise, among which the influence of multipath fading and random impulse noise (IN) is a key problem. Therefore, how to reduce the impact of these two unfriendly channel’s environment is the primary issue of the PLC system design.
Based on the G.hn (Gigabit Home Networking) standard for broadband PLC systems, this thesis is devoted to design the receiving process, which includes signal detection, channel estimation and symbol synchronization, for the preamble under PLC channels with impulse noise. This thesis adopts mathematical derivation and system simulations to compare the system performance of two algorithms, namely energy detection and autocorrelation detection, to perform signal detection. The simulation results show that the energy detection scheme can not only be executed with low complexity, but also complete the signal detection in just one preamble and remain more preambles to be used for the channel estimation. Hence, the energy detection scheme for signal detection is better than the autocorrelation detection, which is contrary to generally expected.
[1]G.hn G.9960 Specification, ITU-T, 2011
[2]M. Zimmermann and K. Dostert, “A Multipath Model for the Powerline Channel”, IEEE Trans. Comm., vol.50, pp.553-559, April 2002
[3]G. Marubayashi and S. Tachikawa, “Spread spectrum transmission on residential power line,” in Proc. IEEE 4th Int. Symp. Spread Spectrum Tech. Applicat. (ISSSTA’96), Mainz, Germany, pp. 1082–1086, Sept. 1996.
[4]D. Middleton, “Non-Gaussian noise models in signal processing for telecommunications: New methods a results for class A and class B noise models,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1129–1149, May 1999.
[5]C. Soussen, J. Idier, D. Brie, and D. Junbo, “From Bernoulli-Gaussian deconvolution to sparse signal restoration,” IEEE Trans. Signal Process, vol. 59, no. 10, pp. 4572–4584, Oct. 2011.
[6]M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002.
[7]G. Ndo, F. Labeau, and M. Kassouf, “A markov-middleton model for bursty impulsive noise: Modeling and receiver design,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2317–2325, Oct 2013.
[8]D. Fertonani and G. Colavolpe, “On reliable communications over channels impaired by bursty impulse noise,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2024–2030, Jul. 2009.
[9]Torio P, Sanchez M. Improving capability of detecting impulsive noise. IEEE Trans Electromagn Compat 2013;55(1):66–73.
[10]LEEMIS, Lawrence M.; Jacquelyn T. MCQUESTON (February 2008). "Univariate Distribution Relationships" (PDF). American Statistician. 62 (1): 45–53.
[11]S. Chaudhari, V. Koivunen, and H. V. Poor, “Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2690–2700, Jul. 2009.
[12]T. W. Anderson, Introduction to Multivariate Statistical Analysis. New York: Wiley, 1958.
[13]Edfors, M. Sandell, J.-J. van de Beek, S. Wilson, and P. Borjesson, "OFDM channel estimation by singular value decomposition," IEEE Trans. Commun., vol. 46, no. 7, pp. 931-939, July 1998.
[14]J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. B¨orjesson, “On channel estimation in OFDM systems,” in Proc. IEEE Vehicular Technology Conf., vol. 2, Chicago, IL, July 1995, pp. 815–819.
[15]Y. Kang, K. Kim, and H. Park, 2007, Efficient DFT-based Channel Estimation for OFDM System on Multipath Channels, Communications IET, vol 1, pp.197-202.
[16]T.M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp 1613-1621, Dec. 1997.
[17]A. Mengi, “On combined coding and modulation,” Ph.D. dissertation, Inst. Experimental Math., Univ. Duisburg-Essen, Essen, Germany, 2010
[18]S. V. Zhidkov, “Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers,” IEEE Trans. Commun., vol. 56, no. 1, pp. 5–9, Jan. 2008.
[19]S. V. Zhidkov, “Performance analysis and optimization of OFDM receiver with blanking nonlinearity in impulsive noise environment,” IEEE Trans. Veh. Technol., 2006, 55. (1). pp.234-242.
[20]Jing-Fen Yang, “Application of Impulse Noise Suppression and Error-Correcting-Code for G.hn Broadband Power Line Communication Systems,” 2019.