| 研究生: |
陳立家 Chen, Li-Chia |
|---|---|
| 論文名稱: |
應用表面增顯紅外光技術於電化學式生醫感測器界面科學之研究 Investigation of Electrochemical Biosensor Surface Science by Surface Enhancement Infrared Spectroscopy |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 表面增顯紅外光 、甘胺酸 、組胺酸 、組織胺 、吸附 、氧化 、金 |
| 外文關鍵詞: | Surface-enhanced infrared spectroscopy, Glycine, Imidazole, Histidine, Histamine, Adsorption, Oxidation, Au |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生物科技技術的進步,電化學式生醫感測器結合跨領域技術的發展吸引越來越多關注,然而絕大多數電化學式生醫感測器的研究,以實驗結果為經驗做為為電極設計或修飾的依據,缺乏基礎理論。近年來著眼於電化學電極界面量測的科學逐漸受到重視,各式的即時量測技術也被廣為運用,其中以具有高靈敏度、表面選擇律以及低背景溶液干擾等優點的表面增顯紅外光技術結合全反射式的分析(ATR-SEIRAS)最具有發展的潛力,並已成功的應用於電化學水溶液系統的界面量測與分析。本研究以甘胺酸、組胺酸、組織胺為研究的標的,利用循環伏安法結合ATR-SEIRAS的技術,分析討論其在金電極表面的電化學行為。
本實驗先以結構最為簡單的甘胺酸為研究對象,以建立後續的理論依據。經由紅外光譜的結果證實,甘胺酸羧基結構上的氫原子會解離形成羧酸根離子,經由兩個氧原子以架橋的型式吸附於金電極面,而結構中的–CH2及–NH2則會較遠離金電極表面,故甘胺酸以近乎垂直的方式吸附在金表面。當電壓到達0.6 V時,連接羧酸根的C–C會產生斷裂,此為甘胺酸氧化的第一步驟。進一步反應產生氰離子、甲醛及氨,而氰酸根離子與氨更可進一步經由Wöhler synthesis產生尿素。
對於咪唑環研究結果顯示,其會經由環上的氮原子垂直的吸附於金電極的表面,在高電位時咪唑環會破裂分解,並產生氰酸根離子。組胺酸會經由羧酸根以及咪唑環的部分吸附於金電極的表面,在高電位分解產生咪唑環及丙胺酸自由基,咪唑環會進行裂解反應,丙胺酸則會進行氧化及去氫化作用,產生的氰酸根離子及胺基亦可經由Wöhler synthesis產生具有醯胺鍵的產物。組織胺氧化會進一步發生聚合反應,產生不具有電化學活性的聚合物,經由紅外光的分析亦可發現咪唑環的光譜訊號,可證實咪唑環在聚合物結構中的完整性。另外,由紅外光中可發現逐漸增加的醯胺鍵訊號,此為連結各單體分子之間的鍵結。
本研究對於甘胺酸的氧化提出一個可信的反應機構,並首次發現其產物—尿素,藉由此理論基礎,更進一步探討組胺酸及組織胺的氧化反應,提出相關重要的反應機制,此可做為生化反應及生醫感測器的重要依據。
There has been an intense interest in electrochemical biosensor with the development of biotechnology. However, most of these researches emphasize the performance of their device and still work by trial and error. There is a lack of fundamental information to support the strategies used for electrode design. Recently, an exciting development in the researching field for electrochemical surface science has received much attention to provide in-situ measurement for electrode surface condition. Surface enhanced infrared spectroscopy in an attenuated total reflection configuration (ATR–SEIRAS) has been successfully used to a number of electrode reaction systems owing to its high signal sensitivity, simple surface selection rule, and negligible interference from bulk solution signals. In this study, the electrochemical characteristic of small molecules, such as glycine, imidazole, histidine, and histamine on Au surface in a phosphate buffer solution was studied and discussed in more detail by cyclic voltammetry combined with ATR-SEIRAS.
The infrared spectra definitely indicate that glycine is adsorbed in a bridging configuration on the electrode with two oxygen atoms directing the C–C bond perpendicular to the surface. The cleavage of C–C bond is the first step in glycine oxidation to form a methylamine radical, which can be transferred to cyanide. Since cyanide is to cyanate at high potentials, it can be detected only at E < 0.4 V. A chemical reaction between ammonia and cyanate, called Wöhler synthesis, make the formation of urea, which bonded to the surface via two nitrogen atoms. The mechanism of glycine electrooxidation is also discussed in this thesis. Imidazole ring is found to adsorb on Au through the pyridine N lone pair of electrons directing the ring plane perpendicular to the surface. There is no polymerization between imidazole molecules. Based on the spectral feature, it can be deduced that the breakdown of imidazole ring and a complicate chemical reaction occur at high potentials to form the products with amide bond. In the case of histidine, its adsorbed orientation is similar to that on Cu surface. The oxidative current appears at lower potential than that of glycine, which may indicate different oxidation step. The infrared spectra of histidine at high potentials are similar to those of imidazole, and there is also no polymerization in histidine oxidation. A weak cyanide band can also be found at E < 0.4 V. A polymerization can be observed in histamine oxidation based on the increasing intensity of imidazole characteristic bands. The polymerized product is inactive. It should be noted that cyanide band is not observable during histamine oxidation. The observation of the amide bands indicates that the polymerization is caused by a chemical reaction.
1. I. Willner, E. Katz, “Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications”, Angew. Chem. Int. Ed. 39 (2000) 1180.
2. P.D. Patel, “(Bio )sensors for measurement of analytes implicated in food safety: a review “, Trends Anal. Chem. 21 (2002) 96.
3. D. Chen, G. Wang, J. Li, “Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces”, J. Phys. Chem. C 111 (2007) 2351.
4. K.J. Odenthal, J.J. Gooding, “An introduction to electrochemical DNA biosensors“, Analyst 132 (2007) 603.
5. J.D. Slinker, N.B. Muren, A.A. Gorodetsky, J.K. Barton, “Multiplexed DNA-Modified Electrodes”, J. Am. Chem. Soc. 132 (2010) 2769.
6. A.K. Wanekaya, W. Chen, “Recent biosensing developments in environmental security”, J. Environ. Monit. 10 (2008) 703.
7. Y. Wang, H. Xu, J. Zhang, G. Li, “Electrochemical Sensors for Clinic Analysis”, Sensors 8 (2008) 2043.
8. C.B. Jacobs, M.J. Peairs, B.J. Venton, “Review: Carbon nanotube based electrochemical sensors for biomolecules”, Anal. Chim. Acta 662 (2010) 105.
9. S. Park, H. Boo, T.D. Chung, “Electrochemical non-enzymatic glucose sensors”, Anal. Chim. Acta 556 (2006) 46.
10. D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, D.E. Cliffel, “Electrochemical Sensors and Biosensors”, Anal. Chem. 84 (2012) 685.
11. J. Janata, “Peer Reviewed: Centennial Retrospective on Chemical Sensors”, Anal. Chem. 73 (2001) 150A.
12. S.M. Khor, G. Liu, C. Fairman, S.G. Iyengar, J.J. Gooding, “The importance of interfacial design for the sensitivity of a label-free electrochemical immuno-biosensor for small organic molecules”, Biosens. Bioelectron. 26 (2011) 2038.
13. H. D. Abruna, Electrochemical Interfaces: Modern Techniques for In-Situ Interface Characterization, Wiley-VCH, New York, 1991.
14. J. Lipkowski, P.N. Ross, Adsorption of Molecules at Metal Electrodes, Wiley-VCH, New York, 1991.
15. S. Ye, T. Kondo, N. Hoshi, J. Inukas, S. Yoshimoto, M. Osawa, K. Itaya, “Recent Progress in Electrochemical Surface Science with Atomic and Molecular Levels”, Electrochemistry 77 (2009) 2.
16. M. Pumera, “Graphene in biosensing”, Mater. Today, 14 (2011) 308.
17. I. Willner, E. Katz, “Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications”, Angew. Chem. Int. Ed. 43 (2004) 6042.
18. D. Samanta, A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications”, Chem. Soc. Rev. 40 (2011) 2567.
19. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chem. Rev. 105 (2005) 1103.
20. C.-C. Chang, L.-C. Chen, S.-J. Liu, S.-F. Hsu, S.-S. Chou, P.-Y. Lin, H.-C. Chang, “Anodic Oxidation Behaviors of Methanol and Benzyl Alcohol at Boron-Doped Diamond Electrode”, Electrochemistry 73 (2005) 1014.
21. C.-C. Chang, L.-C. Chen, S.-J. Liu, H.-C. Chang, “Investigation of Electro-Oxidation of Methanol and Benzyl Alcohol at Boron-Doped Diamond Electrode: Evidence for the Mechanism for Fouling Film Formation”, J. Phys. Chem. B 110 (2006) 19426.
22. L.-C. Chen, C.-C. Chang, H.-C. Chang, “Electrochemical oxidation of histidine at an anodic oxidized boron-doped diamond electrode in neutral solution”, Electrochim. Acta 53 (2008) 2883.
23. C.-C. Lin, L.-C. Chen, C.-H. Huang, S.-J. Ding, C.-C. Chang, H.-C. Chang, “Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection”, J. Electroanal. Chem. 619–620 (2008) 39.
24. J. Wang, A.J. Davenport, H.S. Isaacs, B.M. Ocko, “Surface Charge—Induced Ordering of the Au(111) Surface”, Science 255 (1992) 1416.
25. J. Lipkowski, P. N. Ross, Structure of Electrified Interfaces, Wiley-VCH, New York, 1993.
26. K. Itaya, E. Tomita, “Scanning tunneling microscope for electrochemistry - A new concept for the in situ scanning tunneling microscope in electrolyte solutions”, Surf. Sci. 201 (1988) L507.
27. A. Kudelski, “Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review”, Vib. Spectrosc. 39 (2005) 200.
28. M. Fleischmann, P.J. Hendra, A.J. McQuilla, “Raman spectra of pyridzne adsorbed at a silver electrtode”, Chem. Phys. Lett. 26 (1974) 163.
29. A. Hartstein, J.R. Kirtley, J.C. Tsang, “Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers”, Phys. Rev. Lett. 45 (1980) 201.
30. M. Osawa, In-situ Surface Infrared Spectroscopy of the Electrode/Solution Interface (Eds.: R. C. Alkire, D. M. Kolb, J. Lipkowski, P. H. Ross),Wiley-VCH, Weinheim, 2006, chap. 8.
31. R.J. Nichols, IR spectroscopy of molecules at the solid–solution interface, in Adsorption of molecules at metal electrodes, (Eds.: J. Lipkowski, P. N. Ross), Wiley-VCH, New York, 1992, Chap. 7.
32. M. Osawa, M. Ikeda, “Surface-Enhanced Infrared Absorptlon of p-Nltrobenzolc Acid Deposited on Silver Island Fllms: Contrlbutlons of Electromagnetic and Chemical Mechanisms”, J. Phys. Chem. 95 (1991) 9914.
33. C. Kuhne, G. Steiner, W. B. Fischer, R. Salze, “Surface enhanced FTIR spectroscopy on membranes”, Fresenius J. Anal. Chem. 360 (1998) 750.
34. R.K. Chang , T.E. Furtak, Surface Enhanced Raman Scattering, Plenum, New York 1982.
35. H. Metiu, “Surface enhanced spectroscopy”, Prog. Surf. Sci. 17 (1984) 153.
36. M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys. 57 (1985) 783.
37. A. Otto, I. Mrozeck, H. Grabhorn, W. Akemann, “Surface-enhanced Raman scattering”, J. Phys. Condens. Matter 4 (1992) 1143.
38. A.Wakaun, Surface-enhanced electromagnetic processes, in Solid State Physics, (Eds.: H. Ehrenreich, D. Turnbull), Academic, New York, 1984, pp. 223–294.
39. K. Ataka, J. Heberle, “Electrochemically Induced Surface-Enhanced Infrared Difference Absorption (SEIDA) Spectroscopy of a Protein Monolayer”, J. Am. Chem. Soc. 125 (2003) 4986.
40. K. Ataka, J. Heberle, “Functional Vibrational Spectroscopy of a Cytochrome c Monolayer: SEIDAS Probes the Interaction with Different Surface-Modified Electrodes”, J. Am. Chem. Soc. 126 (2004) 9445.
41. X. Jiang, K. Ataka, J. Heberle, “Influence of the Molecular Structure of Carboxyl-Terminated Self-Assembled Monolayer on the Electron Transfer of Cytochrome c Adsorbed on an Au Electrode: In Situ Observation by Surface-Enhanced Infrared Absorption Spectroscopy”, J. Phys. Chem. C 112 (2008) 813.
42. K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, J. Heberle, “Oriented Attachment and Membrane Reconstitution of His-Tagged Cytochrome c Oxidase to a Gold Electrode: In Situ Monitoring by Surface-Enhanced Infrared Absorption Spectroscopy”, J. Am. Chem. Soc. 126 (2004) 16199.
43. Y. Sato, H. Noda, F. Mizutani, A. Yamakata, M. Osawa, “In Situ Surface-Enhanced Infrared Study of Hydrogen Bond Pairing of Complementary Nucleic Acid Bases at the Electrochemical Interface”, Anal. Chem. 76 (2004) 5564.
44. Y.-X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, “Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode”, J. Am. Chem. Soc. 125 (2003) 3680.
45. M. Osawa, K. Komatsu, G. Samjeské, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutiérrez, “The Role of Bridge-Bonded Adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid on Platinum”, Angew. Chem. Int. Ed. 50 (2011) 1159.
46. A. Cuesta, G. Cabello, M. Osawa, C. Gutiérrez, “Mechanism of the Electrocatalytic Oxidation of Formic Acid on Metals”, ACS Catal. 2 (2012) 728.
47. A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, 2nd ed. Worth Publishers, New York, 1993.
48. T. Hökfelt, “Neuropeptides in Perspective: The Last Ten Years”, Neuron 7 (1991) 867.
49. E.R. Stadtman, “Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions”, Annu. Rev. Biochem. 62 (1993) 797.
50. B. Liedberg, I. Lundström, C.-R. Wu, W.R. Salaneck, “Adsorption of Glycine on Hydrophilic Gold”, J. Colloid Interface Sic. 108 (1985) 123.
51. F. Huerta, E. Morallón, F. Cases, A. Rodes, J.L. Vázquez, A. Aldaz, “Electrochemical behaviour of amino acids on Pt( h,k,l): a voltammetric and in situ FTIR study. Part 1. Glycine on Pt(111)”, J. Electroanal. Chem. 421 (1997) 179.
52. F. Huerta, E. Morallon, J.L. Vazquez, J.M. Perez, A. Aldaz, “Electrochemical behaviour of amino acids on Pt(hkl). A voltammetric and in situ FTIR study. Part III. Glycine on Pt(100) and Pt(110)”, J. Electroanal. Chem. 445 (1998) 155.
53. P. Sandoval, J.M. Orts, A. Rodes, J.M. Feliu, “Adsorption of Glycine on Au(hkl) and Gold Thin Film Electrodes: An in Situ Spectroelectrochemical Study”, J. Phys. Chem. C 115 (2011) 16439.
54. X.-Y. Xiao, S.-G. Sun, J.-L. Yao, Q.-H. Wu, Z.-Q. Tian, ”Surface-Enhanced Raman Spectroscopic Studies of Dissociative Adsorption of Amino Acids on Platinum and Gold Electrodes in Alkaline Solutions”, Langmuir 18 (2002) 6274.
55. D.G. Marangoni, R.S. Smith, S.G. Roscoe, “Surface electrochemistry of the oxidation of glycine at Pt”, Can. J. Chem. 67 (1989) 921.
56. K. Ogura, M. Kobayashi, M. Nakayama, Y. Miho, “Electrochemical and in situ FTIR studies on the adsorption and oxidation of glycine and lysine in alkaline medium”, J. Electroanal. Chem. 449 (1998) 101.
57. C.-H. Zhen, S.-G. Sun, C.-J. Fan, S.-P. Chen, “In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions”, Electrochim. Acta 49 (2004) 1249.
58. X. Zhao, D.-G. Zhao, W.-S. Yang, “Adsorption of alanine on Cu(001) studied by scanning tunneling microscopy”, Surf. Sci. 442 (1999) L995.
59. G. Horányi, E.M. Rizmayer, “Study of the adsorption of glycine on platinized platinum electrodes by tracer methods”, J. Electroanal. Chem.64 (1975) 15.
60. I. Dolamic, T. Bürgi, “In Situ ATR-IR Study on the Photocatalytic Decomposition of Amino Acids over Au/TiO2 and TiO2”, J. Phys. Chem. C 115 (2011) 2228.
61. A. Shavorskiy, F. Aksoy, M.E. Grass, Z. Liu, H. Bluhm, G. Held, “A Step toward the Wet Surface Chemistry of Glycine and Alanine on Cu{110}: Destabilization and Decomposition in the Presence of Near-Ambient Water Vapor”, J. Am. Chem. Soc.133 (2011) 6659.
62. E.M. Marti, Ch. Methivier, P. Dubot, C.M. Pradier, “Adsorption of (S)-Histidine on Cu(110) and Oxygen-Covered Cu(110), a Combined Fourier Transform Reflection Absorption Infrared Spectroscopy and Force Field Calculation Study”, J. Phys. Chem. B 107 (2003) 10785.
63. M. Meng, L. Stievano, J.-F. Lambert, “Adsorption and Thermal Condensation Mechanisms of Amino Acids on Oxide Supports. 1. Glycine on Silica”, Langmuir 20 (2004) 914.
64. J. Gong, T. Yan, C.B. Mullins, “Selective oxidation of propylamine to propionitrile and propionaldehyde on oxygen-covered gold”, Chem. Commun. (2009) 761.
65. D. Thornburg, R.J. Madix, “Cleavage of NH bonds by active oxygen on Ag(110) II. Selective oxidation of ethylamine to acetonitrile”, Surf. Sci. 226 (1990) 61.
66. V.B. Paulissen, C.Korzeniewski, “Infrared Spectroscopy as a Probe of the Adsorption and Electrooxidation of a Cyanide Monolayer at Platinum under Aqueous Electrochemical Conditions”, J. Phys. Chem. 96 (1992) 4563.
67. A. Mittermaier, L.E. Kay, “New Tools Provide New Insights in NMR Studies of Protein Dynamics”, Science 312 (2006) 224.
68. M. Feng, H. Tachikawa, “Raman Spectroscopic and Electrochemical Characterization of Myoglobin Thin Film: Implication of the Role of Histidine 64 for Fast Heterogeneous Electron Transfer”, J. Am. Chem. Soc. 123 (2001) 3013.
69. J.P. Collman, “Functional Analogs of Heme Protein Active Sites”, Inorg. Chem. 36 (1997) 5145.
70. J.-K. Lim, Y. Kim, S.-Y. Lee, S.-W. Joo, “Spectroscopic analysis of l-histidine adsorbed on gold and silver nanoparticle surfaces investigated by surface-enhanced Raman scattering”, Spectrochim. Acta A 69 (2008) 286.
71. K. Ogura, M. Kobayashi, M. Nakayama, Y. Miho, “In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine”, J. Electroanal. Chem. 463 (1999) 218.
72. H.-L. Wang, R.M. O’Malley, J.E. Fernandez, “Electrochemical and Chemical Polymerization of Imidazole and Some of Its Derivatives”, Macromolecules 27 (1994) 893.
73. R.E. Brown, D.R. Stevens, H.L. Haas, “The physiology of brain histamine”, Prog. Neurobiol. 63 (2001) 637.
74. M. Idzko, A. la Sala, D. Ferrari, E. Panther, Y. Herouy, S. Dichmann, M. Mockenhaupt, F. Di Virgilio, G. Girolomoni, J. Norgauer, “Expression and function of histamine receptors in human monocyte-derived dendritic cells”, J. Allergy Clin. Immunol. 109 (2002) 839.
75. B.V. Sarada, Tata N. Rao, D.A. Tryk, A. Fujishima, “Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes”, Anal. Chem. 72 (2000) 1632.
76. V. Carralero, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón, “Pulsed Amperometric Detection of Histamine at Glassy Carbon Electrodes Modified with Gold Nanoparticles”, Electroanalysis 17 (2005) 289.
77. Q. Weng, F. Xia, W. Jin, “Determination of Histamine by Capillary Zone Electrophoresis with End-Column Amperometric Detection at a Carbon Fiber Microdisk Array Electrode”, Electroanalysis 13 (2001) 1459.
78. J. Švarc-Gajić, Z. Stojanović, “Electrocatalytic Determination of Histamine on a Nickel-Film Glassy Carbon Electrode”, Electroanalysis 22 (2010) 2931.
79. M. Fleischmann, K. Korinek, D. Pletcher, “The oxidation of organic compounds at a nickel anode in alkaline solution”, J. Electroanal. Chem. 31 (1971) 39.
80. M. Osawa, “Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS)”, Bull. Chem. Soc. Jpn. 70 (1997) 2861.
81. H. Miyake, S. Ye, M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry”, Electrochem. Commun. 4 (2002) 973.
82. S. Ye, T. Ichihara, K. Uosaki, “Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si.111. Surface in Fluoride Solutions”, J. Electrochem. Soc. 148 (2001) C421.
83. L.A. Nagahara, T. Ohmori, K. Hashimoto, A. Fujishima, “The influence of hydrofluoric acid concentration on electroless copper deposition onto silicon”, J. Electroanal. Chem. 333 (1992) 363.
84. H. Angerstein-Kozlowska, B.E. Conway, A. Hamelin, L. Stoicoviciu, “Elementary steps of electrochemical oxidation of single-crystal planes of Au I. Chemical basis of processes involving geometry of anions and the electrode surfaces”, Electrochim. Acta 31 (1986) 1051.
85. K. Ataka, T. Yotsuyanagi, M. Osawa, “Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy”, J. Phys. Chem. 100 (1996) 10664.
86. R.P. Janek, W.R. Fawcett, A. Ulman, “Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Evidence for Complex Double-Layer Structure in Aqueous NaClO4 at the Potential of Zero Charge”, J. Phys. Chem. B 101 (1997) 8550.
87. U.W. Hamm, D. Kramer, R.S. Zhai, D.M. Kolb, “The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique”, J. Electroanal. Chem. 414 (1996) 85.
88. S.-G. Sun, W.-B. Cai, L.-J. Wan, M. Osawa, “Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy”, J. Phys. Chem. B 103 (1999) 2460.
89. K. Kunimatsu, H. Seki, W.G. Golden, J.G. Gordon, M.R. Philpott, “A Study of the Gold/Cyanide Solution Interface by in Situ Polarization-Modulated Fourier Transform Infrared Reflection Absorption Spectroscopy”, Langmuir 4 (1988) 337.
90. M. Tsuboi, T. Onishi, I. Nakagawa, T. Shimanouchi, S. Mizushima, “Assignments of the vibrational frequencies of glycine”, Spectrochim. Acta 12 (1958) 253.
91. M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa, “Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles”, Appl. Spectrosc. 47 (1993) 1497.
92. G. Samjeske, A. Miki, S. Ye, M. Osawa, “Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy”, J. Phys. Chem. B 110 (2006) 16559.
93. A. Cuesta, G. Cabello, F.W. Hartl, M. Escudero-Escribano, C. Vaz-Dominguez, L.A. Kibler, M. Osawa, C. Gutierrez, “Electrooxidation of formic acid on gold: An ATR-SEIRAS study of the role of adsorbed formate”, Catal. Today 202 (2013) 79.
94. A. Berna, J. Manuel Delgado, J. Manuel Orts, A. Rodes, J.M. Feliu, “Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes”, Electrochim. Acta 53 (2008) 2309.
95. D.S. Corrigan, M.J. Weaver, “Coverage-dependent orientation of adsorbates as probed by potential-difference infrared spectroscopy: azide, cyanate, and thiocyanate at silver electrodes”, J. Phys. Chem. 90 (1986) 5300.
96. A.S. Hinman, R.A. Kydd, R.P. Cooney, “Fourier transform infrared studies of the irreversible oxidation of cyanide at platinum electrodes”, J. Chem. Soc. Faraday Trans. 82 (1986) 3525.
97. F. Kitamura, M. Takahashi, M. Ito, “Oxidation of the cyanide ion at a platinum electrode studied by polarization modulation infrared reflection absorption spectroscopy”, Chem. Phys. Lett. 130 (1986) 181.
98. F. Huerta, E. Morallon, J.M. Perez, J.L. Vazquez, A. Aldaz, “Oxidation of methylamine and ethylamine on Pt single crystal electrodes in acid medium”, J. Electroanal. Chem. 469 (1999) 159.
99. V. Climent, A. Rodes, J.M. Orts, J.M. Feliu, J.M. Perez, A. Aldaz, “On the Electrochemical and in-Situ Fourier Transform Infrared Spectroscopy Characterization of Urea Adlayers at Pt(100) Electrodes”, Langmuir 13 (1997) 2380.
100. V. Climent, A. Rodes, J.M. Orts, A. Aldaz, J.M. Feliu, “Urea adsorption on Pt(111) electrodes”, J. Electroanal. Chem. 461 (1999) 65.
101. A.C.S. Bezerra, E.L. deSa, F.C. Nart, “In Situ Vibrational Study of the Initial Steps during Urea Electrochemical Oxidation”, J. Phys. Chem. B 101 (1997) 6443.
102. M. Garcia-Hernandez, U. Birkenheuer, A.G. Hu, F. Illas, N. Rosch, “Theoretical study of the adsorption of urea related species on Pt(100) electrodes”, Surf. Sci. 471 (2001) 151.
103. M. Nakamura, M.B. Song, M. Ito, “Adsorption of urea on Au(100) and Au(111) electrode surfaces studied by in-situ Fourier-transform infra-red spectroscopy”, Surf. Sci. 427-28 (1999) 167.
104. V. Climent, A. Rodes, R. Albalat, J. Claret, J.M. Feliu, A. Aldaz, “Urea Adsorption on Platinum Single Crystal Stepped Surfaces”, Langmuir 17 (2001) 8260.
105. G. Samjeske, A. Miki, M. Osawa, “Electrocatalytic Oxidation of Formaldehyde on Platinum under Galvanostatic and Potential Sweep Conditions Studied by Time-Resolved Surface-Enhanced Infrared Spectroscopy”, J. Phys. Chem. C 111 (2007) 15074.
106. J. McMurry, Fundamentals of Organic Chemistry, 5th ed., Brooks/Cole, 2003, p. 2.
107. J.A. Collado, I. Tuñón, E. Silla, F.J. Ramírez, “Vibrational Dynamics of Histamine Monocation in Solution: an Experimental (FT-IR, FT-Raman) and Theoretical (SCRF-DFT) Study”, J. Phys. Chem. A 104 (2000) 2120.
108. L.-C. Chen, T. Uchida, H.-C. Chang, M. Osawa, “Adsorption and oxidation of glycine on Au electrode: An in situ surface-enhanced infrared study”, Electrochem. Commun. 34 (2013) 56.
109. D.G. Marangoni, I.G.N. Wylie, S.G. Roscoe, “Surface electrochemistry of the oxidation reactions of - and -alanine at a platinum electrode”, J. Electroanal. Chem. 320 (1991) 269.
校內:2018-07-31公開