簡易檢索 / 詳目顯示

研究生: 張宸禎
Zhang, Chen-Zhen
論文名稱: 利用新穎材料進行3D列印成型與復原之有限元素模擬與分析
Finite Element Simulation and Analysis of 3D Printing Formation and Recovery with Novel Materials
指導教授: 林冠中
Ling, Kuan-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 86
中文關鍵詞: 有限元素分析數值模擬3D 列印新穎材料超彈體材料壓電材料熱固耦合銲接
外文關鍵詞: Finite Element Analysis, Numerical Simulation, 3D Printing, Novel Materials, Hyperelastic Materials, Piezoelectric Materials, Coupled Temperature-displacement, Welding
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用有限元素分析 (Finite Element Method, FEM) 軟體 Abaqus 結合實驗數據,對 3D 列印而成之新穎材料的力學行為進行數值模擬。研究針對三個部分:超彈體材料 (離子凝膠) 、壓電材料 (共熔凝膠) 及熱固耦合機制 (模擬自修復過程) 進行深入探討。
    對於超彈體材料,本研究採用 Yeoh 模型擬合實驗數據,成功模擬 3D 列印之機械手臂的充氣與卸壓行為。結果顯示材料具高度穩定性,即使大變形後仍能恢復原狀。此外,透過數值模擬結果,可推測實驗中機械手臂內部氣壓約 30 kPa,且在模型凹陷處易產生應力集中。針對壓電材料,本研究將其簡化為彈塑性體,建立平板與錐體結構模型進行比較。模擬結果表明錐體結構產生更大應變與應力集中,故推論該模型可產生較高電容量,此模擬趨勢與實驗結果中錐體結構感測器靈敏度較高之發現相符,驗證了錐體結構在提升壓電材料電容量方面的潛力。最後,為探討新材料透過加熱實現的自修復特性,研究以鋼板銲接過程為例進行熱固耦合模擬,採用高斯面熱源模型進行數值分析,成功模擬出銲接後鋼板內部的殘餘應力分布,這些殘餘應力分布特性與相關文獻研究結果一致,驗證了熱固耦合模擬的可行性。
    本研究透過有限元素數值模擬與實驗數據的整合分析,成功驗證了 3D 列印超彈體材料和壓電材料的力學行為特性,並為探討材料熱固耦合機制建立了基礎。研究成果不僅為新穎材料的開發、設計與應用提供了重要的理論依據與技術支持,亦有助於減少實驗試驗成本與時間,提升研究效率。

    This study utilizes the Finite Element Method (FEM) software Abaqus, in combination with experimental data, to numerically simulate the mechanical behavior of novel 3D-printed materials. The research focuses on three key aspects: hyperelastic materials (ionogels), piezoelectric materials (eutectic gels), and thermo-mechanical coupling mechanisms (simulating self-healing processes).
    For hyperelastic materials, the Yeoh model was used to fit the experimental data and successfully simulate the inflation and deflation behavior of a 3D-printed robotic arm. The results demonstrated that the material exhibited high stability and was capable of returning to its original shape even after large deformations. Moreover, the simulation results indicated that the internal air pressure of the robotic arm during the experiment was approximately 30 kPa, and stress concentration tended to occur in the concave regions of the model.
    Regarding the piezoelectric materials, they were simplified as elastoplastic materials, and both flat and conical structure models were developed for comparison. The simulation results showed that the conical structure generated greater strain and stress concentrations, suggesting that it could achieve higher capacitance. This trend aligns with experimental observations that sensors with a conical structure exhibit higher sensitivity, confirming the potential of this design in enhancing the capacitance of piezoelectric materials.
    Finally, to explore the self-healing capability of novel materials through heating, the study simulated the welding process of steel plates as an example of thermo-mechanical coupling. A Gaussian surface heat source model was adopted for the numerical analysis, successfully reproducing the residual stress distribution within the welded steel plates. These results were consistent with those reported in the literature, validating the feasibility of the thermo-mechanical coupling simulation.
    By integrating finite element simulation with experimental data, this research effectively verified the mechanical behavior of 3D-printed hyperelastic and piezoelectric materials, and established a foundation for investigating thermo-mechanical coupling mechanisms. The findings not only provide theoretical and technical support for the development, design, and application of novel materials, but also help reduce experimental costs and time, thereby improving research efficiency.

    中文摘要 I Abstract II 誌謝 V 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1. 研究動機 1 1-2. 文獻回顧 2 1-2.1 超彈體材料的發展與應用 2 1-2.2 壓電材料與電容式感測技術 3 1-2.3 銲接過程的數值模擬方法與發展 4 1-3. 本文結構 5 第二章 有限元素分析法 6 2-1. 有限元素分析法簡介 6 2-2. 有限元素分析之基本理論 6 2-3. 有限元素之元素介紹 9 2-4. 有限元素之積分方法 11 2-4.1 高斯積分法 (Gaussian Integral) 11 2-4.2 全積分 (Full Integration) 13 2-4.3 降階積分法 (Reduced Integration) 14 2-4.4 Newmark-beta法 15 第三章 超彈體材料 16 3-1. 超彈體材料實驗 16 3-1.1 超彈體材料實驗簡介 16 3-1.2 超彈體材料介紹與配比說明 17 3-1.3 超彈體材料拉伸實驗結果與數據 17 3-2. 超彈體材料數值分析模型之建立與設定 18 3-2.1 超彈體材料數值分析模型幾何參數 18 3-2.2 超彈體材料數值分析模型材料參數 20 3-2.3 超彈體材料數值分析模型邊界條件與外力條件設定 22 3-3. 超彈體材料數值分析結果 25 3-3.1 重力分析步結果說明 25 3-3.2 加壓與洩壓分析步說明 27 3-3.3 超彈體材料數值分析小結 32 第四章 壓電材料 33 4-1. 壓電材料實驗 33 4-1.1 壓電材料實驗簡介 33 4-1.2 壓電材料介紹與配比說明 34 4-1.3 壓電材料拉伸實驗結果與數據 35 4-2. 壓電材料數值分析模型之建立與設定 36 4-2.1 壓電材料數值分析模型幾何參數 36 4-2.2 壓電材料數值分析模型材料參數 39 4-2.3 壓電材料數值分析模型邊界條件與外力條件設定 41 4-3. 壓電材料數值分析結果 42 4-3.1 壓電材料數值分析結果說明 42 4-3.2 壓電材料數值分析小結 44 第五章 銲接模擬 50 5-1. 銲接模擬理論基礎 50 5-1.1 殘餘應力 50 5-1.2 熱源方程式說明 53 5-2. 銲接數值分析模型之建立與設定 55 5-2.1 銲接數值分析模型幾何參數 55 5-2.2 銲接數值分析模型材料參數 58 5-2.3 銲接數值分析模型邊界條件與外力條件設定 59 5-3. 銲接數值分析結果 61 5-3.1 殘餘應力分析結果說明 62 5-3.2 銲接數值分析小結 64 第六章 總結與未來展望 65 6-1. 總結 65 6-2. 未來展望 66 參考文獻 67

    [1] Cong-Wei Huang. Soft robotics with self-healing and sensing capability achieved by digital light processing and ionogels, 2023.
    [2] Chuan-Hsun Hsiao. Versatile polymer gels based on hydrophobic deep eutectic solvents and in situ phase separation for digital light processing 3d printing, 2024.
    [3] Nurul Syahida Mohd Nasir, MKAA Razab, Sarizam Mamat, and Muhammad Iqbal. Review on welding residual stress. stress, 2(5):8–10, 2006.
    [4] 曾光宏. 不銹鋼銲件變形與殘留應力之研究. 交通大學機械工程研究所, 博士論文, 2000.
    [5] 謝欣涵. 不銹鋼薄板應用脈衝式雷射銲接之數值分析. 臺灣師範大學工業教育學系學位論文, pages 1–83, 2007.
    [6] Ronald S Rivlin and DW0042 Saunders. Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(865):251–288, 1951.
    [7] Melvin Mooney. A theory of large elastic deformation. Journal of applied physics,11(9):582–592, 1940.
    [8] Ronald S Rivlin. Large elastic deformations of isotropic materials iv. further develop-ments of the general theory. Philosophical transactions of the royal society of London. Series A, Mathematical and physical sciences, 241(835):379–397, 1948.
    [9] Oon H Yeoh. Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5):754–771, 1993.
    [10] Raymond William Ogden. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567):565–584, 1972.
    [11] Abaqus Analysis User’s Guide. SIMULIA, 2016.
    [12] Benjamin Ang Wee Keong and Raye Yeow Chen Hua. A novel fold-based design approach toward printable soft robotics using flexible 3d printing materials. Advanced Materials Technologies, 3(2):1700172, 2018.
    [13] Jihan F Esmail, Mohammed Z Mohamedmeki, and Awadh E Ajeel. Using the uniaxial tension test to satisfy the hyperelastic material simulation in abaqus. In IOP conference series: materials science and engineering, volume 888, page 012065. IOP Publishing,2020.
    [14] Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots. Nature, 521(7553):467–475, 2015.
    [15] Ryan L Truby, Michael Wehner, Abigail K Grosskopf, Daniel M Vogt, Sebastien GM Uzel, Robert J Wood, and Jennifer A Lewis. Soft somatosensitive actuators via embedded 3d printing. Advanced materials, 30(15):1706383, 2018.
    [16] Jacques Curie and Pierre Curie. Piezoelectric and allied phenomena in rochelle salt. Comput rend acad sci paris, 91(9):294–297, 1880.
    [17] Woldemar Voigt. Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), volume 34. BG Teubner, 1910.
    [18] Paul Langevin. Procédé et appareils d’émission et de réception des ondes élastiques sous-marines à l’aide des propriétés piézoélectriques du quartz. Brevet d’Invention, 505, 1918.
    [19] BM Wul and IM Goldman. Dielectric constant of barium titanate as a function of strength of an alternating field. Compt Rend Acad Sci URSS, 46:154–57, 1945.
    [20] Hans Jaffe. Piezoelectric ceramics. Journal of the American Ceramic Society, 41(11):494–498, 1958.
    [21] Geoff G Diamond and David A Hutchins. A new capacitive imaging technique for ndt. In Proceedings of the European Conference on NDT, Berlin, Germany, pages 25–29, 2006.
    [22] Bin Cheng. Security imaging devices with planar capacitance sensor arrays. PhD thesis, University of Manchester, 2008.
    [23] Xiaohui Hu and Wuqiang Yang. Planar capacitive sensors–designs and applications. Sensor Review, 30(1):24–39, 2010.
    [24] Hongsen Niu, Song Gao, Wenjing Yue, Yang Li, Weijia Zhou, and Hong Liu. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small, 16(4):1904774, 2020.
    [25] Yunong Zhao, Xiaohui Guo, Weiqiang Hong, Tong Zhu, Tianxu Zhang, Zihao Yan, Kangli Zhu, Jingyi Wang, Guoqing Zheng, Shanan Mao, et al. Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3d printing. Composites Science and Technology, 231:109837, 2023.
    [26] V Pavelic. Experimental and computed temperature histories in gas tungsten arc welding of thin plates. Welding Journal Research Supplement, 48:296–305, 1969.
    [27] John Goldak, Aditya Chakravarti, and Malcolm Bibby. A new finite element model for welding heat sources. Metallurgical transactions B, 15:299–305, 1984.
    [28] Paulo Roberto de Freitas Teixeira, Douglas Bezerra de Araújo, and Luiz Antonio Bragança da Cunda. Study of the gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes. 2014.
    [29] KWON Yong-Jai, SHIM Seong-Beom, and PARK Dong-Hwan. Friction stir welding of 5052 aluminum alloy plates. Transactions of Nonferrous Metals Society of China, 19:s23–s27, 2009.
    [30] Tomasz Kik. Heat source models in numerical simulations of laser welding. Materials, 13(11):2653, 2020.
    [31] Shuangxi Hu, Fang Li, and Pei Zuo. Numerical simulation of laser transmission welding—a review on temperature field, stress field, melt flow field, and thermal degradation. Polymers, 15(9):2125, 2023.
    [32] Minaalsadat Mirhendi Esfahani. Welding simulation of steels welded with low transformation temperature (ltt) filler materials. 2016.
    [33] Abdulrahman Alghamdi and Hamzah A Alharthi. Finite element simulation of the effect of phase transformation on residual stress in a thick section t-joint. Crystals, 12(10):1422, 2022.
    [34] X Shan, CM Davies, T Wangsdan, NP O’dowd, and KM Nikbin. Thermo-mechanical modelling of a single-bead-on-plate weld using the finite element method. International Journal of Pressure Vessels and Piping, 86(1):110–121, 2009.
    [35] Yue Chen, Jianmin Han, Zhiqiang Li, Lingqin Xia, and Zhiyong Yang. An inverse method for searching parameters of combined welding heat source model. Inverse Problems in Science and Engineering, 22(6):1009–1028, 2014.
    [36] Cong-Wei Huang, Si-Chun Wen, Chuan-Hsun Hsiao, Chen-Zhen Zhang, Kuan-Chung Lin, and Sheng-Sheng Yu. Digital light processing of soft robotic gripper with high toughness and self-healing capability achieved by deep eutectic solvents. Advanced Functional Materials, page 2314101, 2024.
    [37] Yang Jiang, Shengfang Li, Yapeng Chen, Shilin Yan, Min Tao, and Pin Wen. Facile and green preparation of superfast responsive macroporous polyacrylamide hydrogels by frontal polymerization of polymerizable deep eutectic monomers. Industrial & Engineering Chemistry Research, 59(4):1526–1533, 2020.
    [38] 鄭欽源. 有限元素法應用於 7075 鋁合金銲接模擬之研究. 臺灣師範大學工業教育學系學位論文, pages 1–87, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE