簡易檢索 / 詳目顯示

研究生: 賴奕丞
Lai, Yi-Cheng
論文名稱: 高效雙功能鎳鐵釩硫化物OER/ORR催化劑
NiFeV sulfides with superior bifunctional OER/ORR activity
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: OERORR鎳鐵硫化物雙功能鋅空氣電池電子結構
外文關鍵詞: Nickel Iron Sulfide, OER, ORR, Bifunctional, Zn-air battery
相關次數: 點閱:99下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧析出 (OER) 以及氧還原 (ORR) 雙功能活性材料做為可再生燃料電池和金屬空氣電池的電極材料,在近幾年來受到越來越多的關注。雖然在OER有 RuO2、 IrO2 ; 在ORR有 Pt/C 等穩定且高效的催化劑存在。然而,這些貴金屬材料的稀缺性以及昂貴價格,使其在實際應用方面沒有辦法量產,因此便宜的替代材料便顯得至關重要。而在過渡金屬氧化物、氫氧化物,磷化物與硫化物等材料之中,硫化物以出色的導電性以及催化性質成為了最受矚目的替代之一。
    在這項研究中,一系列過渡金屬元素(Ti、V、Cr、Mn、Co、Cu、Zn)被系統性地摻雜到鎳鐵硫化物 (NiFe Sulfides) 中,並研究其對其雙功能催化性質所產生的影響。其中,釩原子摻雜的鎳鐵硫化物得益於釩原子帶來的高 Fe3+/ Fe2+比例以及豐富高效的電子轉移,表現出了最佳的ORR催化能力和具有競爭力的OER活性。除此之外,釩原子摻雜鎳鐵硫化物隨後與碳混合後展現出優異的 OER (E10 = 1555 mV) 和 ORR (E1/2 = 769 mV) 催化性質,擁有最小的ΔE值 (E10-E1/2 ) 786 mV。本實驗為透過元素摻雜來優化鎳鐵硫化物的電子結構向的研究提供一些更深的見解。

    The development of highly active and nonprecious electrocatalysts for improving the sluggish processes of OER and ORR are essential to the practical application of unitized regenerative fuel cell and metal-air batteries, yet remains a challenge. In this study, a series of transition metals (Ti, V, Cr, Mn, Co, Cu, Zn) have been systematically doped into Nickel Iron Sulfide and studied for better bifunctionality. Among them, Vanadium doped Nickel Iron Sulfide demonstrates the best ORR catalytic ability as well as competitive OER activity, benefitting from the enhanced Fe3+/ Fe 2+ ratio as well as rich and efficient electron transfer brought by Vanadium atoms. Moreover, NFV Sulfide is then physically mixed with carbon and tested in 0.1 M KOH, exhibiting outstanding catalytic ability of OER (E10 = 1555 mV) and ORR (E1/2 = 769 mV), providing the smallest ΔE (E10-E1/2) of 786 mV. This work gives an efficient method for engineering the electronic structure of Nickel Iron Sulfide through optimized doping controlling.

    摘要 i EXTENDED ABSTRACT ii 致謝 xviii 總目錄 xix 表目錄 xxi 圖目錄 xxi 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第2章 文獻回顧 3 2.1 氧氣析出反應 Oxygen evolution reaction (OER) 3 2.2 氧氣還原反應 Oxygen reduction reaction (ORR) 9 2.3 OER/ORR 雙功能催化劑之應用 16 2.4 金屬硫化物OER/ORR催化劑 19 第3章 實驗方法與分析原理 21 3.1 實驗藥品 21 3.2 實驗流程與步驟 22 3.2.1 氫氧化物之合成 22 3.2.2 氫氧化物之硫化 24 3.3 工作電極製備 25 3.4 分析方法 26 3.4.1 X光繞射分析儀(X-ray Diffraction Analysis Spectrometer) 26 3.4.2 場發射式電子掃描顯微鏡(Field-Emission Scanning Electron Microscope) 27 3.4.3 高解析穿透電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope) 28 3.4.4 X射線光電子能譜(X-ray Photoelectron Spectroscopy) 29 3.4.5 電化學性質分析 30 第4章 結果與討論 32 4.1 鎳鐵氫氧化物及鎳鐵硫化物 32 4.1.1 XRD晶體結構分析 32 4.1.2 SEM電子掃描表面形貌 34 4.1.3 電化學分析 34 4.2 過度金屬元素參雜之鎳鐵硫化物 38 4.2.1 XRD晶體結構分析 38 4.2.2 SEM表面形貌以及TEM微結構分析 39 4.2.3 XPS表面元素鍵結組成分析 42 4.2.4 電化學表面積 ( ECSA ) 48 4.2.5 電化學分析 49 4.3 不同比例之釩摻雜鎳鐵硫化物 60 4.3.1 XRD晶體結構分析 60 4.3.2 SEM表面形貌以及TEM微結構分析 61 4.3.3 XPS表面元素鍵結組成分析 63 4.3.4 電化學分析 67 4.4 釩參雜鎳鐵硫化物與活化奈米碳纖維之混合物 74 第5章 結論 77 參考文獻 78

    1. Chu, S., Y. Cui, and N. Liu, The path towards sustainable energy. Nature materials, 2017. 16(1): p. 16-22.
    2. Yan, Y., et al., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(45): p. 17587-17603.
    3. Li, Y. and H. Dai, Recent advances in zinc–air batteries. Chemical Society Reviews, 2014. 43(15): p. 5257-5275.
    4. Seh, Z., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998. 2017.
    5. Huang, Z.F., et al., Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Advanced Energy Materials, 2017. 7(23): p. 1700544.
    6. Jiao, Y., et al., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. Journal of the American Chemical Society, 2014. 136(11): p. 4394-4403.
    7. Kirsanova, M.A., et al., Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo 4 O 7.3 oxide. Journal of Materials Chemistry A, 2019. 7(1): p. 330-341.
    8. Gupta, S., et al., Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chemistry–An Asian Journal, 2016. 11(1): p. 10-21.
    9. Su, H.-Y., et al., Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Physical Chemistry Chemical Physics, 2012. 14(40): p. 14010-14022.
    10. Kuang, M., et al., Amorphous/crystalline heterostructured cobalt‐vanadium‐iron (oxy) hydroxides for highly efficient oxygen evolution reaction. Advanced Energy Materials, 2020. 10(43): p. 2002215.
    11. Li, S., et al., Layered Double Hydroxide@ Polydopamine Core–Shell Nanosheet Arrays-Derived Bifunctional Electrocatalyst for Efficient, Flexible, All-Solid-State Zinc–Air Battery. ACS Sustainable Chemistry & Engineering, 2019. 8(1): p. 452-459.
    12. Zhou, D., et al., NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angewandte Chemie International Edition, 2019. 58(3): p. 736-740.
    13. Fan, Y., et al., Ni‐Fe Nitride Nanoplates on Nitrogen‐Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn‐Air Battery. Small, 2017. 13(25): p. 1700099.
    14. Shalom, M., et al., Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015. 3(15): p. 8171-8177.
    15. Zhang, Y., et al., Rapid synthesis of cobalt nitride nanowires: highly efficient and low‐cost catalysts for oxygen evolution. Angewandte Chemie, 2016. 128(30): p. 8812-8816.
    16. Liang, H., et al., Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano letters, 2016. 16(12): p. 7718-7725.
    17. Zeng, H., et al., Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER. ACS Applied Materials & Interfaces, 2020. 12(47): p. 52549-52559.
    18. Parra-Puerto, A., et al., Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catalysis, 2019. 9(12): p. 11515-11529.
    19. Xu, Y., et al., Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: examining the effects of compositional tuning on OER and ORR activity. Catalysis Science & Technology, 2020. 10(7): p. 2173-2182.
    20. Zhang, J., et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-micro letters, 2019. 11(1): p. 1-13.
    21. Zhou, D., et al., Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery. Journal of Materials Chemistry A, 2018. 6(42): p. 21162-21166.
    22. Li, S., et al., Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019. 7(32): p. 18674-18707.
    23. Cai, P., et al., Oxygen‐containing amorphous cobalt sulfide porous nanocubes as high‐activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angewandte Chemie, 2017. 129(17): p. 4936-4939.
    24. Li, H., et al., Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature communications, 2018. 9(1): p. 1-12.
    25. Yang, H., et al., Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn–Air batteries. Advanced Energy Materials, 2018. 8(34): p. 1801839.
    26. Liu, H., et al., Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS nano, 2017. 11(11): p. 11574-11583.
    27. Dai, W., et al., Nanocrystalline NiS particles synthesized by mechanical alloying as a promising oxygen evolution electrocatalyst. Materials Letters, 2018. 218: p. 115-118.
    28. Cao, Y., et al., Nitrogen-, oxygen-and sulfur-doped carbon-encapsulated Ni3S2 and NiS core–shell architectures: bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 15582-15590.
    29. Wu, T., et al., Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Research, 2018. 11(2): p. 1004-1017.
    30. Shi, X., et al., Nanosheets assembled into nickel sulfide nanospheres with enriched Ni 3+ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019. 7(41): p. 23787-23793.
    31. Liu, Y., S. Yin, and P.K. Shen, Asymmetric 3d electronic structure for enhanced oxygen evolution catalysis. ACS applied materials & interfaces, 2018. 10(27): p. 23131-23139.
    32. Ganesan, P., et al., Designing an FeIII-Doped Nickel Sulfide/Carbon Nanotube Hybrid Catalyst for Alkaline Electrolyte Membrane Water Electrolyzers and Zn–Air Battery Performances. ACS Applied Energy Materials, 2020. 3(11): p. 10961-10975.
    33. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
    34. Zen, J.-M., et al., Electrochemical impedance study and sensitive voltammetric determination of Pb (II) at electrochemically activated glassy carbon electrodes. Analyst, 2000. 125(6): p. 1139-1146.
    35. Zen, J.-M., G. Ilangovan, and J.-J. Jou, Square-wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes. Analytical Chemistry, 1999. 71(14): p. 2797-2805.
    36. Laschuk, N.O., E.B. Easton, and O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC advances, 2021. 11(45): p. 27925-27936.
    37. Zhao, Q., et al., Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chemical reviews, 2017. 117(15): p. 10121-10211.
    38. Guo, X., et al., Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. Acs Catalysis, 2019. 9(12): p. 11042-11054.
    39. Yu, L., et al., Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis, 2011. 282(1): p. 183-190.
    40. Yan, H., et al., First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. Journal of Applied Physics, 2012. 112(10): p. 104316.
    41. Xue, T., et al., Dissociative adsorption of O 2 on strained Pt (111). Physical Chemistry Chemical Physics, 2018. 20(26): p. 17927-17933.
    42. Ou, L., et al., First-principle study of the adsorption and dissociation of O2 on Pt (111) in acidic media. The Journal of Physical Chemistry C, 2009. 113(48): p. 20657-20665.
    43. Juaristi, J., et al., Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Physical review letters, 2008. 100(11): p. 116102.
    44. Jiao, Y., et al., Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015. 44(8): p. 2060-2086.
    45. Chiu, Y.-H., Control Synthesis of Graphene/NiO/CoO Bifunctional Catalyst for Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). 2016.
    46. Sankarasubramanian, S., et al., Rotating ring-disc electrode investigation of the aprotic superoxide radical electrochemistry on multi-crystalline surfaces and correlation with density functional theory modeling: Implications for lithium-air cells. Journal of The Electrochemical Society, 2016. 163(10): p. A2377.
    47. Treimer, S., A. Tang, and D.C. Johnson, A Consideration of the application of Koutecký‐Levich plots in the diagnoses of charge‐transfer mechanisms at rotated disk electrodes. Electroanalysis, 2002. 14(3): p. 165-171.
    48. Zoski, C.G., et al., Electrochemical methods: fundamentals and applications, student solutions manual. 2021.
    49. Filimonenkov, I.S., et al., Rotating ring-disk electrode as a quantitative tool for the investigation of the oxygen evolution reaction. Electrochimica Acta, 2018. 286: p. 304-312.
    50. Vincent, I., E.-C. Lee, and H.-M. Kim, Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives. RSC advances, 2020. 10(29): p. 16844-16860.
    51. Lee, D.U., et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016. 4(19): p. 7107-7134.
    52. Hu, C., et al., Edge sites with unsaturated coordination on core–shell Mn3O4@ MnxCo3− xO4 nanostructures for electrocatalytic water oxidation. Advanced Materials, 2017. 29(36): p. 1701820.
    53. KA, H.W.R.M.S. and A. Grimaud, Suntivich J. Shao-Horn Y. Energy Environ. Sci, 2015. 8: p. 1404.
    54. Morales, D.M., et al., Trimetallic Mn‐Fe‐Ni oxide nanoparticles supported on multi‐walled carbon nanotubes as high‐performance bifunctional ORR/OER electrocatalyst in alkaline media. Advanced Functional Materials, 2020. 30(6): p. 1905992.
    55. Wang, D., et al., Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature communications, 2019. 10(1): p. 1-12.
    56. Yu, J., et al., Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017. 46(19): p. 5950-5974.
    57. Lu, Z., et al., Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications, 2016. 52(5): p. 908-911.
    58. Shinde, S.S., et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS nano, 2017. 11(1): p. 347-357.
    59. Zhao, X. and Y. Pei, Single Metal Atom Supported on N-Doped 2D Nitride Black Phosphorus: An Efficient Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions. The Journal of Physical Chemistry C, 2021. 125(23): p. 12541-12550.
    60. Shen, M., et al., Covalent entrapment of cobalt–iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS applied materials & interfaces, 2015. 7(2): p. 1207-1218.
    61. Ledendecker, M., et al., The synthesis of nanostructured Ni5P4 films and their use as a non‐noble bifunctional electrocatalyst for full water splitting. Angewandte Chemie International Edition, 2015. 54(42): p. 12361-12365.
    62. Chen, B., et al., Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. Journal of Power Sources, 2016. 334: p. 112-119.
    63. Han, X., et al., NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017. 31: p. 541-550.
    64. Liu, Q., J. Jin, and J. Zhang, NiCo2S4@ graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS applied materials & interfaces, 2013. 5(11): p. 5002-5008.
    65. Yang, J., et al., Fe3O4‐decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: a new and efficient electrocatalyst for oxygen evolution reaction. Advanced Functional Materials, 2016. 26(26): p. 4712-4721.
    66. Zhou, G., et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li− S batteries. Proceedings of the National Academy of Sciences, 2017. 114(5): p. 840-845.
    67. He, J. and A. Manthiram, A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Materials, 2019. 20: p. 55-70.
    68. Lai, W., et al., A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale, 2016. 8(6): p. 3823-3833.
    69. Jiang, J., et al., Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016. 27: p. 526-534.
    70. Morales-Gallardo, M., et al., Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity. Chemical Physics Letters, 2016. 660: p. 93-98.
    71. Singh, R.K., et al., Electrochemical impedance spectroscopy of oxygen reduction reaction (ORR) in a rotating disk electrode configuration: effect of ionomer content and carbon-support. Journal of The Electrochemical Society, 2015. 162(6): p. F489.
    72. Zhou, L., et al., Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Advanced Functional Materials, 2021. 31(15): p. 2009743.
    73. Luan, C., et al., Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS nano, 2018. 12(4): p. 3875-3885.
    74. Liao, W., W. Li, and Y. Zhang, Sulfur and oxygen dual vacancies manipulation on 2D NiS2/CeO2 hybrid heterostructure to boost overall water splitting activity. Materials Today Chemistry, 2022. 24: p. 100791.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE