簡易檢索 / 詳目顯示

研究生: 鍾羽涵
Chung,Yu-Han
論文名稱: 介白素-33 核蛋白影響腦膠質瘤細胞之 DNA 修復基因表達及其細胞核結構
Nuclear IL-33 mediates DNA repair gene expression and nuclear structure in glioma cells
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 腦膠質瘤介白素-33DNA 修復細胞核結構
外文關鍵詞: glioma, interleukin-33, DNA repair, nuclear structure
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    腦膠質細胞瘤是原發性腦腫瘤中最常見的類型,為人類癌症中具高度侵略性及侵襲性之神經腫瘤。介白素33 (IL-33) 被認為是一種具雙功能之細胞因子,在組織損傷時能通過酵素促進細胞裂解,進而充當細胞因子之警報蛋白;並且其 N 端包含染色質結合基序及核定位序列 (NLS),可調節細胞核之位置轉換並與異染色質中之組蛋白結合。實驗室先前研究表明,IL-33 可促進腦膠質瘤之致瘤性及影響微小膠細胞之遷移,但對於細胞核內 IL-33之功能仍然不甚瞭解。在本研究中,利用人類神經膠質瘤細胞株 (U251MG 及 U87MG) 為平台,並使用慢病毒轉染調節 IL-33 表現量 (IL33KD 及 IL33oe),進一步了解 IL33 於細胞核中之生物功能。本研究發現,IL-33 高度表達之腦膠質瘤細胞 (IL33oe) 對於 DNA 損傷藥物—TMZ的作用具有抵抗力,可能與 IL33oe 細胞中與 DNA 修復相關之基因 (BRCA1、BRCA2、Brcc3、Rad51、FANCB 以及 FANCD)表達顯著增加有關。利用穿透式電子顯微鏡 (TEM) 以及組蛋白 H2A 之免疫螢光染色分析腦膠質瘤細胞核之形狀,IL33KD 減弱了異常具癌變性之細胞核特徵,包括細胞核之凹槽及裂縫情形,並縮小甜甜圈狀孔洞;反之,IL33oe 加劇了癌變之核凹槽及裂縫,使甜甜圈狀孔洞變大,並出現多葉狀結構之細胞核異常情形。進一步利用西方墨點法分析組蛋白 (H2A及H3) 之表現量;IL33KD 使其表現量顯著降低,而IL33oe 則是顯著增加。另外在非組蛋白之 DNA 結合蛋白,HMGA1 及 HMGA2 也觀察到相同之結果。綜合以上,細胞核內 IL-33 之高度表達伴隨 DNA 修復相關之基因表達增加,進而導致腦膠質瘤細胞對於 DNA 損傷藥物產生抵抗性。並且IL-33 核蛋白會與染色質相關蛋白相結合,進而調節腦膠質細胞瘤之細胞核結構,從而導致癌細胞之擴展及惡化。

    SUMMARY

    Glioma, the most common subtype of primary brain tumor, is aggressive and highly invasive neurologically tumor. Interleukin-33 (IL-33) belongs to IL-1 family and functions as an alarmin upon tissue damage via the interaction with its receptor ST2 at the extracellular space after the cleavage with proteinase. However, the full length of IL-33 protein contains N-terminal homeodomain-like helix-turn-helix that includes a chromatin-binding motif and nuclear localization sequence (NLS). Thus, IL-33 is referred as a nuclear protein to have potential in the regulation of nuclear translocation and association with histones in heterochromatin. The previous study from our laboratory has shown that IL-33 might promote glioma expansion and microglia migration via the interaction with ST2. Given the fact that IL-33 is expressed abundantly in the glioma cell nucleus, its nuclear function remains to be defined in depth. In this study, using lentivirus-mediated IL33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (BRCA1, BRCA2, Brcc3, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Next, examination of glioma nuclear shape from transmission electron microscopy (TEM) analysis and immunofluorescence for histone protein H2A staining. The results show that IL33KD attenuated the abnormal cancerous nuclear characteristic including indentation, long clefts, and doughnut-like shape. whereas these, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. Moreover, IL33KD decreased nuclear H2A and H3 levels and high mobility group protein 1/2 (HMGA1/2) in U251MG. In contrast, forced overexpression of IL-33 in U251MG (IL33 oe U251MG) increased nuclear H2A/H3 levels and HMGA1/2. Furthermore, the results through the pull-down analysis showed the interaction of H2A and IL-33 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in DNA repair-associated gene expression, contributing to desensitization of glioma cells to DNA damaging agent. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulates glioma nuclear structure, which might be crucial for glioma progression and malignancy.

    中文摘要 I 英文延伸摘要 II 致謝 VI 目錄 VIII 圖目錄 XI 縮寫表 XIII 前言 1 一、腦膠細胞瘤 (GLIOMAS) 1 二、介白素33(INTERLEUKIN-33) 3 1、IL-33 警報蛋白功能 4 2、IL-33/ST2 訊息路徑與腫瘤生長 5 三、腫瘤細胞和結構特性之介紹 7 四、DNA 修復 8 研究目標 11 材料與方法 12 一、實驗材料 12 1、細胞培養材料與試劑 12 2、化學藥品 12 3、抗體 13 4、引子 14 5、重組慢病毒載體 15 6、試劑組 15 二、實驗方法 16 1、細胞實驗 16 1-1、大鼠腦膠質瘤細胞培養 (Rat C6 gliomas cell line) 16 1-2、人類惡性腦膠質聊細胞培養 (Human malignant gliomas cell line) 17 1-3、重組慢病毒載體轉殖 (Lentiviral Vector Transduction) 17 1-4、藥物處理之細胞存活率分析 (MTT cell viability Assay) 18 1-5、核蛋白萃取 (Nuclear Protein Extraction) 19 1-6、西方墨點法 (Western Blot Analysis) 19 1-7、核酸即時定量分析 (Quantitative Real-Time Polymerase Chain Reaction ;Q-PCR) 20 1-8、細胞免疫螢光染色 (Immunofluorescence) 22 1-9、穿透式電子顯微鏡分析 (Transmission Electron Microscopy ; TEM) 23 2、統計分析 (StatisticalAnalysis) 23 實驗結果 24 一、NUCLEAR IL-33 參與 DNA 修復進而對 TMZ 藥物作用產生抗性 24 1、IL-33 高度表達增加了人類惡性腦膠質瘤細胞對 DNA 損傷劑 TMZ 藥物之 抗性 24 2、IL-33 調節人類惡性腦膠質瘤細胞之 DNA 修復基因表現量 26 二、NUCLEAR IL-33 與人類惡性腦膠質瘤細胞之細胞核 27 1、IL-33 影響人類惡性腦膠質瘤細胞之細胞核結構 27 2、IL-33 影響人類惡性腦膠質瘤細胞之組蛋白表達 28 3、IL-33 影響人類惡性腦膠質瘤細胞之 HMGA 蛋白表達 29 4、IL-33 影響大鼠腦膠質瘤細胞之組蛋白表達及細胞核結構 30 討論 31 一、IL-33 在人類惡性腦膠質瘤細胞中之功能 31 二、NUCLEAR IL-33 在人類惡性腦膠質瘤細胞中之功能 32 三、NUCLEAR IL-33 與細胞核結構之功能 33 結論 35 參考文獻 36

    Ali S, Nguyen DQ, Falk W, Martin MU. 2010. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation. Biochem Biophys Res Commun 391:1512-6.

    Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. 2011. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol 187:1609-16.

    Allan D, Fairlie-Clarke KJ, Elliott C, Schuh C, Barnett SC, Lassmann H, Linnington C, Jiang HR. 2016. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun 4:75.

    Allred DC. 2010. Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr 2010:134-8.

    Ahmed EM, Bandopadhyay G, Coyle B, Grabowska A. 2018. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol (Dordr) 41:319-328.

    Ashkenazi A, Salvesen G. 2014. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337-56.

    Atsumi Y, Minakawa Y, Ono M, Dobashi S, Shinohe K, Shinohara A, Takeda S, Takagi M, Takamatsu N, Nakagama H and others. 2015. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Eficient yH2AX Foci Formation. Cell Reports 13:2728-2740.

    Bahrami S, Drablos FJAibr. 2016. Gene regulation in the immediate-early response process. Adv Biol Regul 62:37-49.

    Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM. 2006. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 311:856-61.

    Barrette B, Nave KA, Edgar JM. 2013. Molecular triggers of neuroinflammation in mouse models of demyelinating diseases. Biol Chem 394:1571-81.

    Brandao M, Simon T, Critchley G, Giamas GJG. 2019. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67:779-790.

    Cagnol S, Chambard JC. 2010. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 277:2-21.

    Cao K, Liao X, Lu J, Yao S, Wu F, Zhu X, Shi D, Wen S, Liu L, Zhou H. 2018. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J Neuroinflammation 15:136.

    Carlock C, Wu J, Shim J, Moreno-Gonzalez I, Pitcher MR, Hicks J, Suzuki A, Iwata J, Quevado J, Lou Y. 2017. Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. Transl Psychiatry 7:e1191.

    Carriere V, Roussel L, Ortega N, Lacore DA, Americh L, Aguilar L, Bouche G, Girard JP. 2007. IL-33, the L-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A 104:282-7.

    Catalano V, Turdo A, Di Franco S, Dieli F. Todaro M., Stassi G. Tumor and its microenvironment: a synergistic interplay; 2013. Elsevier. p 522-532.

    Cayrol C, Girard JP. 2018. Interleukin-33(IL-33) : A nuclear cytokine from the IL-1 family. Immunol Rev 281:154-168.

    Chai KM, Wang CY, Liaw HJ, Fang KM, Yang CS, Tzeng SF. 2014. Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide. Oncotarget 5:10901-15.

    Chamberlain MC, Kormanik PA. 1998. Practical guidelines for the treatment of malignant gliomas. West J Med 168:114-20.

    Chen Q, Kang J, Fu C. 2018. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduction and Targeted Therapy 3:18.

    Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. 2019. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78.

    Citterio E. 2015. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 6:282.

    Clark AS, Deans B, Stevens MF, Tisdale MJ, Wheelhouse RT, Denny BJ, Hartley JA. 1995.Antitumor imidazotetrazines. 32. Synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. J Med Chem 38:1493-504.

    Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R, Wrensch M. 2015. Survival and low-grade glioma: the emergence of genetic information. Neurosurg Focus 38:E6.

    Clouaire T, Legube G. 2019. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 35:330-345.

    Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annual review of immunology 35:441-468.

    Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364-78.

    da Silva-Junior IA, Dalmaso B, Herbster S, Lepique AP, Jancar S. 2018. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death. Front Oncol 8:10.

    da Silva IA, Jr., Chammas R, Lepique AP, Jancar S. 2017. Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis 6:6296.

    De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH and others. 2020. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 11:4997.

    Dennis EA. 2016. Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease. J Biol Chem 291:24431-24448.

    Detopoulou P, Nomikos T, Fragopoulou E, Panagiotakos DB, Pitsavos C, Stefanadis C, Antonopoulou S. 2009. Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, platelet-activating factor acetylhydrolase (PAF-AH) in leukocytes and body composition in healthy adults. Lipids Health Dis 8:19.

    Dhuriya YK, Sharma D. 2018. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15:199.

    Edinger AL, Thompson CB. 2004. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663-9.

    Fang KM, Yang CS, Lin TC, Chan TC, Tzeng SF. 2014. Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro Oncol 16:552-66.

    Fu MH, Wang CY, Hsieh YT, Fang KM, Tzeng SF. 2018. Functional Role of Matrix gla Protein in Glioma Cell Migration. Mol Neurobiol 55:4624-4636.

    Fusco A, Fedele M. 2007. Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899-910. Gramatzki D, Frei K, Cathomas G, Moch H, Weller M, Mertz KD. 2016. Interleukin-33 in human gliomas: Expression and prognostic significance. Oncol Lett 12:445-452.

    Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM. 2009. Interleukin-33 -cytokine of dual function or novel alarmin? Trends Immunol 30:227-33.

    Kuchler AM, Pollheimer J, Balogh J, Sponheim J, Manley L, Sorensen DR, De Angelis PM, Scott H, Haraldsen G. 2008. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 173:1229-42.

    Lapointe S, Perry A, Butowski NA. 2018. Primary brain tumours in adults. Lancet 392:432-446.

    Liew FY, Girard JP, Turnquist HR. 2016. Interleukin-33 in health and disease. Nat Rev Immunol 16:676-689.

    Liew FY, Pitman NI, McInnes IB. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol 10:103-10.

    Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. 2020. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY) 12:1685-1703.

    Liu Q, Turnquist HR. 2013. Implications for Interleukin-33 in solid organ transplantation. Cytokine 62:183-94.

    Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P and others. 2009. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84-98.

    Martin MU. 2013. Special aspects of interleukin-33 and the IL-33 receptor complex. Semin Immunol 25:449-57.

    Martin NT, Martin MU. 2016. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 17:122-31.

    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. 2017. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 19:v1-v88.

    Ozturk N, Singh I, Mehta A, Braun T, Barreto G. 2014. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2:5.

    Pinto SM, Subbannayya Y, Rex DAB, Raju R, Chatterjee O, Advani J, Radhakrishnan A, Keshava Prasad TS, Wani MR, Pandey A. 2018. A network map of IL-33 signaling pathway. J Cell Commun Signal 12:615-624.

    Roussel L, Erard M, Cayrol C, Girard JP. 2008. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep 9:1006-12.

    Sgarra R, Pegoraro S, Ros G, Penzo C, Chiefari E, Foti D, Brunetti A, Manfioletti G. 2018. High Mobility Group A (HMGA) proteins: Molecular instigators of breast cancer onset and progression. Biochim Biophys Acta Rev Cancer 1869:216-229.

    Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL and others. 2015. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA 314:2535-43.

    Sung HY, Chen WY, Huang HT, Wang CY, Chang SB, Tzeng SF. 2019. Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression. J Neurochem 150:691-708.

    Travers J, Rochman M, Miracle CE, Habel JE, Brusilovsky M, Caldwell JM, Rymer JK, Rothenberg ME. 2018. Chromatin regulates IL-33 release and extracellular cytokine activity. Nat Commun 9:3244.

    Xu S, Tang L, Li X, Fan F, Liu Z. 2020. Immunotherapy for glioma: Current management and future application. Cancer Lett 476:1-12.

    Zhang J, Wang P, Ji W, Ding Y, Lu X. 2017a. Overexpression of interleukin-33 is associated with poor prognosis of patients with glioma. Int J Neurosci 127:210-217.

    Zhang JF, Tao T, Wang K, Zhang GX, Yan Y, Lin HR, Li Y, Guan MW, Yu JJ, Wang XD. 2019. IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C. Sci Rep 9:20276.

    Zhang JF, Wang P, Yan YJ, Li Y, Guan MW, Yu JJ, Wang XD. 2017b. IL33 enhances glioma cell migration and invasion by upregulation of MMP2 and MMP9 via the ST2-NF-kappaB pathway. Oncol Rep 38:2033-2042.

    Zink D, Fischer AH, Nickerson JA. 2004. Nuclear structure in cancer cells. Nat Rev Cancer 4:677-87.

    無法下載圖示 校內:2026-07-16公開
    校外:2026-07-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE