簡易檢索 / 詳目顯示

研究生: 葉蕙慈
Yeh, Hui-Tzu
論文名稱: 藉模糊近似法求解二維Navier-Stokes 方程式
An Advanced Solution Design for Two-Dimensional Navier-Stokes Equtions: Fuzzy Approach
指導教授: 陳永裕
Chen, Yung-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: Navier-Stokes equation適應理論模糊解
外文關鍵詞: Navier-Stokes equation, adaptive algorithm, Fuzzy solution
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著先進科技如航太科技,水下技術發展進步,微機電系統以及生物科技等發展,流體力學之應用與逐漸成為重要的研究目標之一,特別是針對流體之運動行為分析研究,進而期望達到預測及控制之目的。然而, Navier-Stokes 方程式為最能真實描述流體之運動行為的方程式,而此方程式由於相當複雜導致遲遲無人求得其解析解。
    本文以一新穎的方法(偏微分方程之適應模糊解)求解二維 Navier-Stokes 方程式。目的是希望對二維 Navier-Stokes方程式與其幾何分析後之邊界條件求得一精確解。藉由模糊邏輯設計一粗略之模糊解,經數學推導以適應理論調整參數,其原理是以最佳化之方法將其誤差函數極小化而得。
    本文首先以此適應模糊解求得一維Navier-Stokes 方程式模糊解,並將此模糊解與解析解比較得此差異極小,以驗證此方法之準確性。再以相同方法用於解二維 Navier-Stokes 方程式,可確保此二維 Navier-Stokes 模糊解為準確、完善。

    With the development of technological, such as aeronautical engineering, ocean, naval mechatronics engineering, and MEMS, biomedical technology, the application of fluid dynamics becomes an important research objective, especially in the analysis of the motion behavior and are expected to achieve that forecast and control purposes. To describe the motion behavior of fluid, the Navier-Stokes Equation is generally adopted. However, the equation is quite complicated and there is still no analytical solution.
    This study develops a new method, called adaptive fuzzy algorithm, for finding the solution of two-dimensional Navier-Stokes equations. The design objective is to find one fuzzy solution by the analysis of two-dimensional Navier-Stokes equations and the boundary conditions. The method is based on the fuzzy logical system to set up a rough fuzzy solution in the first and an adaptive law and optimum method are then investigated to minimize the error energy function for tuning the adjustable parameters of the proposed fuzzy solution.
    First, this study uses the method to find the fuzzy solution of one-dimensional Navirer-Stokes equations, and compare the solution to exact solution to prove the accuracy of the method. Then, we can prove the method for solving the two-dimensional Navirer-Stoles Equation is robust and perfect.

    摘要 ii Abstract iii 致謝 iv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Objective 2 1.4 Structure 3 Chapter 2 Description of Navier-Stokes Equations 5 Description of Three-Dimensional Navier-Stokes Equations 5 Chapter 3 Fuzzy Logic Systems 8 3.1 Description of the Partial Differential Equation Problem 8 3.2 Description of the Fuzzy Approximation 9 3.3 Approximation Error Bound between Exact Solution and Proposed Fuzzy Solution 11 3.4 Adaptive Law of the Adjustable Parameters 13 Chapter 4 Fuzzy Solutions and Simulation Results 17 4.1 1D NSE Problem Formulation 17 4.2 Description of One-Dimensional Navier-Stokes Equations and Analytical Solution 20 4.3 Description of two-Dimensional Navier-Stokes Equations 28 4.4 2D NSE Problem Formulation 29 4.5 Simulation Results and Discussion 34 Chapter 5 Conclusions 42 Appendix 43 A. Proof of Theorem 1 43 B. Proof of Theorem 2 46 C. Proof of Theorem 3 47 References 50

    [1] K.A.Trumble,D.G.Schauerhamer,W.L. Kleb,J.Carlson,and K.T.Edquist,“Analysis of Navier-Stokes Codes Applied to Supersonic Retro-Propulsion Wind Tunnel Test,” IEEE Aerospace Conference, pp. 1-13, 2011.
    [2] Chen-Wei Chen, Jen-ShiangKouh, and Jing-Fa Tsai, “Modeling and Simulation of an AUV Simulator with Guidance System,” IEEE, Oceanic Engineering, vol. 38, no. 2, pp. 211-225, 2013.
    [3] Ronald W.Brower,Reddy Reddy V.Reddy, andAbraham Noordergraaf,“Difficulties in the Further Development of Venous Hemodynamics,” IEEETrans, Biomedical Engineering,vol. 16, no. 4, pp. 335-338, 1969.
    [4] Hong-e Li and Zhu Rui, “Stabilized Finite Element Method for Vorticity Velocity Pressure Formulation of the Stationary Navier-Stokes Equations,”IEEE, Computational and Information SciencesConference,pp. 634-637, 2010.
    [5] J.P. De Angeli, A.M.P. Valli, N.C. Jr. Reis, and A.F. De Souza, “Finite Difference Simulations of the Navier-Stokes Equations using Parallel Distributed Computing,” IEEE,Computer Architecture and High Performance Computing,pp. 149-156, 2003.
    [6] BaoguoWang,YanhuGuo,OiushengLiu, and MengyuShen, “Higher Order Accurate and High-Resolution Implicit Upwind Finite Volume Scheme for Solving Euler/ Reynolds- Averaged Navier Stokes Equations,” IEEE,Tsinghua Science and Technology, vol. 5, no. 1, pp. 47-53, 2000.
    [7] S. Narasimhan, Chen Kuan , and F. Stenger,“The Solution of Incompressible Navier Stokes Equations Using the Sine Collocation Method,”IEEE,Thermal and Thermomechanical Phenomena in Electronic SystemsConference,vol. 1,2000.
    [8] L.Ji, and Zhou Jianxin,“The Boundary Element Method for Boundary Control of the Linear Stokes Flow,” IEEE,Decision and Control Conference,vol. 3, pp. 1192 – 1194, 1990.
    [9] Shijin Ding,Huanyao Wen,Lei Yao,Changjiang Zhu, “Global Weak Solution to One-Dimensional Compressible Isentropic Navier-Stokes Equations with Density-Dependent Viscosity,” American Institute of Physics,Journal of Mathematical Physics, vol. 50, no. 2,pp. 023101-023101-17, 2009
    [10] Yung-Yue Chen, Yu-Te Chang, Bor-SenChen, “Fuzzy Solutions to Partial Differential Equations: Adaptive Approach, ” IEEE Trans, Fuzzy Systems, vol. 7, no. 1, pp. 116-127, 2009.
    [11] S. P. Banks, Control Systems Engineering, NJ: Prentice-Hall, 1986
    [12] D. Kincaid and W. Cheney, Numerical Analysis. Pacific Grove, CA: Brooks/Cole, 1991.
    [13] Yunus A Cengel,Fluid Mechanics Fundamentals and Applications, NY: McgrawHill Higher Education, 2009.
    [14] David Pnueli and ChaimGutfinger, Fluid Mechanics, NY: Cambridge University Press, 1992.
    [15] http://ocw.nthu.edu.tw/ocw/upload/2/184/Nozzle%20pressure%20measurement.pdf
    [16] Tom M., Apostol, Mathematical Analysis, Addison Wesley, 1974.
    [17] S. S. Saatry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989
    [18] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [19] J. M. Ortega, Matrix Theory, NY: Plenum Press, Inc, 1987.

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE