簡易檢索 / 詳目顯示

研究生: 羅宗倫
Lo, Tzung-Lun
論文名稱: 氧化鋅/砷化鎵薄膜退火前後之奈米壓痕行為及微觀結構變化之研究
Nanoindentation Behaviour and Microstructure of ZnO/GaAs Thin Film with and without Annealing
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 氧化鋅砷化鎵退火奈米壓痕差排
外文關鍵詞: Nanoindentation, GaAs, Microstructural evolution, Annealing, Thin films
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究討論氧化鋅/砷化鎵薄膜系統奈米壓痕行為,以及退火前後機械性質、表面形貌和微觀結構之變化。本實驗利用共濺鍍機於砷化鎵基板上沈積100nm及200nm之氧化鋅薄膜,分別對薄膜厚度100nm試片進行70nm和150nm深度之試驗,以及薄膜厚度200nm試片進行70nm和250nm深度之試驗,以了解壓痕深度與膜厚之影響。此外也對另一組試片進行500℃持溫30分鐘之加熱,同樣進行上述之量測,以比較退火前後之差異。
    實驗結果顯示,退火前之負載-深度曲線有pop-in之現象,經退火後硬度及楊氏模數皆下降,因此無因薄膜脫落基板而發生pop-in之現象。當壓痕深度皆為70nm時,膜厚較薄之試片因受基板影響較明顯而具有較大之硬度值。觀察試片表面形貌及剖面微觀結構可發現,壓痕深度越大表面之變形量與差排密度也越大,當壓痕深度皆為70nm時,膜厚較薄之試片因受基板影響較明顯而有較大之表面變形與差排密度。退火後表面變形與差排密度皆較小。

    The mechanical properties of ZnO/GaAs thin films with and without annealing indented in room temperatures to different depth were measured by using a nanoindentation technique. The specimens were annealed at the temperature 500℃ for 30 minutes. The result show that without annealing the pop-in effect appeared at the load-depth curve as the specimen indented at room temperature, due to the delamination of the thin film from the substrate. After annealing, the load-depth curve become smooth and the hardness and Young’s modulus is found to decrease. Furthermore, dislocations were also found to decrease significantly. The changes in microstructure and mechanical properties caused by different variables such as annealing, indentation depth and thickness of the thin film were also discussed.

    中文摘要 I Abstract II 致謝 IX 總目錄 X 圖目錄 XIII 符號說明 XVI 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 砷化鎵性質與應用理論介紹 3 2-1-1 太陽能電池 3 2-1-2 砷化鎵性質與應用理論介紹 3 2-2 奈米壓痕理論 4 2-2-1 奈米壓痕數學模型 4 2-2-2 初始卸載勁度與接觸面積之量測 5 2-2-3 奈米壓痕數學模型的修正 7 2-3 影響薄膜測量之因素 8 2-3-1 壓痕尺寸效應(Indentation size effect, ISE) 8 2-3-2 表面粗糙效應(Surface roughness) 8 2-3-3 擠出和沉陷效應(Pile-up & sink-in effect) 9 2-3-4 基材效應(Substrate effect) 9 2-4 奈米壓痕試驗之實驗校正 9 2-4-1 五點定位校正 9 2-4-2 熱漂移(thermal drift)校正 10 2-4-3 靜電力之校正 10 2-4-4 探針面積函數校正 10 第三章 實驗方法與步驟 14 3-1 實驗流程 14 3-2 實驗儀器與設備 14 3-2-1 共濺鍍機(Co-Sputtering Deposition System) 15 3-2-2 電子束微影光罩製作系統(EBL) 15 3-2-3 雙面對準/UV光感奈米壓印機 16 3-2-4 奈米壓痕試驗機(Nano-Indentation System) 16 3-2-5 退火處理設備(Thermal annealing) 16 3-2-6 前瞻聚焦離子束系統(Advanced focused ion beam, FIB) 16 3-2-7 高解析穿透式電子顯微鏡(HR-TEM) 17 3-3 試片製備 17 3-3-1 濺鍍材料與試片製備 18 3-3-2 微影蝕刻製程 18 3-4 實驗方法與步驟 19 3-4-1 奈米壓痕試驗 19 3-4-2 對試片進行退火處理 19 3-4-3 微觀結構的觀察 20 第四章 實驗結果與討論 29 4-1 薄膜機械性質討論 29 4-1-1 負載曲線分析 29 4-1-2 硬度曲線分析 30 4-1-3 楊氏模數曲線分析 31 4-2 壓痕表面形貌討論 31 4-2-1 退火前後壓痕表面形貌分析 32 4-2-2 膜厚差異之壓痕表面形貌分析 32 4-2-3 壓痕深度差異之壓痕表面形貌分析 33 4-3 壓痕剖面微觀結構討論 33 4-3-1 退火前後壓痕剖面微觀結構分析 34 4-3-2 膜厚差異之壓痕剖面微觀結構分析 34 4-3-3 壓痕深度差異之剖面微觀結構分析 35 第五章 結論 59 參考文獻 60

    [1] A. G. Aberle, "Thin-film solar cells," Thin solid films, vol. 517, no. 17, pp. 4706-4710, 2009.
    [2] J. G. Swadener, E. P. Georgea, and G. M. Pharra, "The correlation of the indentation size effect measured with indenters of various shapes," Journal of the Mechanics and Physics of Solids, vol. 50, pp. 681-694, 2002.
    [3] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering, vol. A253, pp. 151-159, 1998.
    [4] M. Sakai, N. Hakiri, and T. Miyajima, "Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales," Journal of materials research, vol. 21, no. 9, pp. 2298-2303, 2006.
    [5] S. Rajagopalan and R. Vaidyanathan, "Nano-and microscale mechanical characterization using instrumented indentation," JOM, vol. 54, no. 9, pp. 45-48, 2002.
    [6] T. P. Rao and M. Santhoshkumar, "Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis," Applied Surface Science, vol. 255, no. 8, pp. 4579-4584, 2009.
    [7] J. Chang, H. Kuo, I. Leu, and M. Hon, "The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor," Sensors and actuators B: Chemical, vol. 84, no. 2-3, pp. 258-264, 2002.
    [8] H. Kim et al., "Effect of film thickness on the properties of indium tin oxide thin films," Journal of Applied Physics, vol. 88, no. 10, pp. 6021-6025, 2000.
    [9] C.-Y. Yen et al., "Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films," Applied Surface Science, vol. 257, no. 17, pp. 7900-7905, 2011.
    [10] O. Lupan et al., "Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium," Applied Surface Science, vol. 256, no. 6, pp. 1895-1907, 2010.
    [11] S.-K. Wang, T.-C. Lin, S.-R. Jian, J.-Y. Juang, J. S.-C. Jang, and J.-Y. Tseng, "Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering," Applied Surface Science, vol. 258, no. 3, pp. 1261-1266, 2011.
    [12] N. Perkas, G. Amirian, O. Girshevitz, and A. Gedanken, "Hydrophobic coating of GaAs surfaces with nanostructured ZnO," Materials Letters, vol. 175, pp. 101-105, 2016.
    [13] Y. Zhang, H.-L. Lu, Y. Geng, Q.-Q. Sun, S.-J. Ding, and D. W. Zhang, "Impact of rapid thermal annealing on structural and electrical properties of ZnO thin films grown atomic layer deposition on GaAs substrates," Vacuum, vol. 103, pp. 1-4, 2014.
    [14] B. L and B. Roberto, "The scaling challenges of CMOS and the impact on high-density non-volatile memories," Microsystem Technologies, vol. 13, no. 2, pp. 133-138, 2006.
    [15] R. Ludeke and G. Landgren, "Electronic properties and chemistry of Ti/GaAs and Pd/GaAs interfaces," Physical Review B, vol. 33, no. 8, pp. 5526-5535, 1986.
    [16] S. Ashok and J. M. Borrego, "Electrical characteristics of GaAs MIS Schottky diodes," Solid-State Electronics, vol. 22, pp. 621-631, 1979.
    [17] C. Anthony and C. Fischer, "Nanoindentation," 2nd ed. Springer, N. Y., 2004.
    [18] S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2nd ed. McGraw-Hill, N. Y., 1951.
    [19] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7 No.3, 1992.
    [20] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1992.
    [21] S. Hainsworth, H. Chandler, and T. Page, "Analysis of nanoindentation load-displacement loading curves," Journal of Materials Research, vol. 11, no. 8, pp. 1987-1995, 1996.
    [22] M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, "Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate," Surface and Coatings Technology, vol. 200, no. 14-15, pp. 4185-4194, 2006.
    [23] I. Manika and J. Maniks, "Size effects in micro- and nanoscale indentation," Acta Materialia, vol. 54, no. 8, pp. 2049-2056, 2006.
    [24] K.-D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, and G. Erkens, "The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation," Materials characterization, vol. 49, no. 2, pp. 149-156, 2002.
    [25] M. Bobji and S. Biswas, "Deconvolution of hardness from data obtained from nanoindentation of rough surfaces," Journal of materials research, vol. 14, no. 6, pp. 2259-2268, 1999.
    [26] A. Bolshakov and G. Pharr, "Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques," Journal of materials research, vol. 13, no. 4, pp. 1049-1058, 1998.
    [27] K. MIYAKE, S. FUJISAWA, and A. KORENAGA, "The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation," Japanese Journal of Applied Physics, vol. 43, no. 4602-4605, 2004.
    [28] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta materialia, vol. 50, no. 1, pp. 23-38, 2002.
    [29] D. Kramer, A. Volinsky, N. Moody, and W. Gerberich, "Substrate effects on indentation plastic zone development in thin soft films," Journal of Materials Research, vol. 16, no. 11, pp. 3150-3157, 2001.
    [30] B. Bokhonov and M. Korchagin, "In situ investigation of stage of the formation of eutectic alloys in Si–Au," Journal of Alloys and Compounds, vol. 312, pp. 238-250, 2000.
    [31] Y.-L. Chuang, "Effect of annealing temperature on nanoindented microstructure of CuSi thin films," 2009.
    [32] X. Li and B. Bhushan, "A review of nanoindentation continuous stiffness measurement technique and its applications," Materials characterization, vol. 48, no. 1, pp. 11-36, 2002.
    [33] K. Wasmer, R. Gassilloud, J. Michler, and C. Ballif, "Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP," Journal of Materials Research, vol. 27, no. 01, pp. 320-329, 2011.
    [34] A. J. Haq, P. Munroe, M. Hoffman, P. Martin, and A. Bendavid, "Deformation behaviour of DLC coatings on (111) silicon substrates," Thin Solid Films, vol. 516, no. 2-4, pp. 267-271, 2007.
    [35] K. Durst, B. Backes, and M. Göken, "Indentation size effect in metallic materials: Correcting for the size of the plastic zone," Scripta Materialia, vol. 52, no. 11, pp. 1093-1097, 2005.
    [36] T.-H. Fang, W.-J. Chang, and C.-M. Lin, "Nanoindentation characterization of ZnO thin films," Materials Science and Engineering: A, vol. 452, pp. 715-720, 2007.
    [37] T.-H. Fang, W.-J. Chang, and C.-M. Lin, "Nanoindentation and nanoscratch characteristics of Si and GaAs," Microelectronic engineering, vol. 77, no. 3-4, pp. 389-398, 2005.
    [38] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tourni , and J. P. Faurie, "Nanoindentation of Si, GaP, GaAs and ZnSe single crystals," Journal of Physics D Applied Physics, vol. 36, no. 1, pp. L5-L9, 2003.
    [39] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, "Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness," Materials Science and Engineering: A, vol. 427, no. 1-2, pp. 232-240, 2006.
    [40] R. Ahuja, L. Fast, O. Eriksson, J. Wills, and B. Johansson, "Elastic and high pressure properties of ZnO," Journal of applied physics, vol. 83, no. 12, pp. 8065-8067, 1998.
    [41] P. Carcia, R. McLean, M. Reilly, and G. Nunes Jr, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, 2003.
    [42] S. Dhara and P. Giri, "ZnO nanowire heterostructures: intriguing photophysics and emerging applications," Rev. Nanosci. Nanotechnol, vol. 2, pp. 147-170, 2013.
    [43] K. K. Bum, "Interfacial reactions in the Ti/GaAs system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 3, p. 1473, 1988.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE