| 研究生: |
張藍云 Chang, Lan-Yun |
|---|---|
| 論文名稱: |
重組凝血酶調節素蛋白第一功能區對脂多醣所誘發的噬骨細胞功能之影響 Effects of Recombinant Thrombomodulin Domain 1 in Porphyromonas gingivalis Lipopolysaccharide-Induced Osteoclastogenesis |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 凝血酶調節素 、牙齦卟啉單胞菌 、發炎 、蝕骨細胞新生作用 |
| 外文關鍵詞: | Thrombomodulin, Porphyromonas gingivalis, Inflammation, Osteoclastogenesis |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素蛋白 (thrombomodulin, TM) 是一種包含五個功能區的第I型穿膜醣蛋白,TM表達於多種細胞類型,並參與調控細胞功能。噬骨細胞是由單核細胞或巨噬細胞分化而成的多核細胞,主要功能為進行骨質吸收,從其分化到執行細胞功能之過程稱為蝕骨細胞新生作用 (osteoclastogenesis) 。牙齦卟啉單胞菌 (Porphyromonas. gingivalis) 的脂多醣 (Pg-LPS) 會造成嚴重發炎症狀、蝕骨細胞新生及牙槽骨侵蝕,是主要導致慢性牙周炎的致病因子。先前的研究已知,凝血酶調節素蛋白第一功能區 (TMD1) 能降低發炎反應和核因子κ-B受體激活配體 (RANKL) 所引起的蝕骨細胞新生作用和骨質流失。因此,重組凝血酶調節素蛋白第一功能區 (rTMD1) 可能抑制牙齦卟啉單胞菌的脂多醣與核因子κ-B受體激活配體同時誘導的發炎反應和蝕骨細胞新生作用。利用rTMD1處理小鼠巨噬細胞 (RAW 264.7) 時,牙齦卟啉單胞菌的脂多醣與核因子κ-B受體激活配體同時誘導所提升的促發炎因子、蝕骨細胞標誌基因、蝕骨細胞形成、蝕骨細胞骨質吸收活性均受到抑制。rTMD1也可抑制牙齦卟啉單胞菌的脂多醣誘導的M1型巨噬細胞形成。實驗及果顯示rTMD1透過阻斷p38及細胞外調節蛋白激酶在小鼠巨噬細胞的胞內信息傳遞,達到抑制腫瘤壞死因子-α與核因子κ-B受體激活配體同時誘導的蝕骨細胞新生作用。綜合本研究結果,rTMD1能夠抑制牙齦卟啉單胞菌的脂多醣與核因子κ-B配體受體激活配體同時誘導的蝕骨細胞新生作用,因此rTMD1具有發展成為牙周疾病治療藥物的潛力。
Thrombomodulin (TM), a type I transmembrane glycoprotein containing five functional domains, is expressed in many cell types and is involved in various biological functions. Osteoclastogenesis is a process that monocytes/macrophages differentiate into osteoclasts, the bone resorbing multinucleated cells for bone resorption. Porphyromonas gingivalis (P. gingivalis) derived lipopolysaccharide (Pg-LPS), a major pathogenic risk factor, functions to increase the inflammation, osteoclastogenesis, alveolar bone resorption, and causes chronic periodontitis. Previous studies have demonstrated that the TM lectin-like domain (TMD1) could function to reduce inflammatory response and the receptor activator of nuclear factor kappa-Β ligand (RANKL)-upregulated osteoclastogenesis and bone loss. Therefore, we hypothesized that the recombinant TMD1 (rTMD1) could suppress Pg-LPS- plus RANKL-induced inflammation and osteoclastogenesis. By treating the RAW 264.7 cells, a murine macrophage cell line, with rTMD1, we found that the Pg-LPS- plus RANKL-induced upregulations of pro-inflammatory cytokines, osteoclast marker genes, osteoclast formation, and bone resorption activity were all inhibited. The Pg-LPS-induced formation of M1-type macrophages, which contribute to promoting inflammation and osteoclastogenesis, was reduced by rTMD1 treatment. Furthermore, rTMD1 suppressed the intracellular signaling of p38 and extracellular regulated protein kinases in RAW 264.7 cells to inhibit osteoclastogenesis induced by RANKL and tumor necrosis factor-α. In conclusion, rTMD1 functions to suppress Pg-LPS-induced osteoclastogenesis, and may provide a potential treatment strategy for periodontal diseases.
1. Zaidi, M., Skeletal remodeling in health and disease. Nature Medicine, 2007. 13(7): p. 791.
2. Seeman, E. and P.D. Delmas, one quality—the material and structural basis of bone strength and fragility. New England Journal of Medicine, 2006. 354(21): p. 2250-2261.
3. Kumanogoh, A., Semaphorins: A Diversity of Emerging Physiological and Pathological Activities. 2015: Springer.
4. Stanley, E.R., et al., Biology and action of colony‐stimulating factor‐1. Molecular Reproduction and Development: Incorporating Gamete Research, 1997. 46(1): p. 4-10.
5. Ross, F.P., M‐CSF, c‐Fms, and signaling in osteoclasts and their precursors. Annals of the New York Academy of Sciences, 2006. 1068(1): p. 110-116.
6. Wada, T., et al., RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends in Molecular Medicine, 2006. 12(1): p. 17-25.
7. Yagi, M., et al., DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. Journal of Experimental Medicine, 2005. 202(3): p. 345-351.
8. Bar‐Shavit, Z., The osteoclast: A multinucleated, hematopoietic‐origin, bone‐resorbing osteoimmune cell. Journal of Cellular Biochemistry, 2007. 102(5): p. 1130-1139.
9. Martinez, F.O., et al., Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. The Journal of Immunology, 2006. 177(10): p. 7303-7311.
10. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 2008. 8: p. 958.
11. Shi, C. and E.G. Pamer, Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 2011. 11: p. 762.
12. Medzhitov, R., Toll-like receptors and innate immunity. Nature Reviews Immunology, 2001. 1(2): p. 135-145.
13. LeibundGut-Landmann, S., et al., Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunology, 2007. 8: p. 630.
14. Benoit, M., B. Desnues, and J.-L. Mege, Macrophage polarization in bacterial infections. The Journal of Immunology, 2008. 181(6): p. 3733-3739.
15. Stow, J.L., et al., Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology, 2009. 214(7): p. 601-612.
16. Watford, W.T., et al., The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews, 2003. 14(5): p. 361-368.
17. Gordon, S. and F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity, 2010. 32(5): p. 593-604.
18. Redlich, K. and J.S. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention. Nature Reviews Drug Discovery, 2012. 11(3): p. 234.
19. Mundy, G.R., Osteoporosis and inflammation. Nutrition Reviews, 2007. 65(suppl_3): p. S147-S151.
20. Souza, P.P. and U.H. Lerner, The role of cytokines in inflammatory bone loss. Immunological Investigations, 2013. 42(7): p. 555-622.
21. Raetz, C.R. and C. Whitfield, Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 2002. 71(1): p. 635-700.
22. Hershberger, C. and S. Binkley, Chemistry and Metabolism of 3-Deoxy-d-mannooctulosonic Acid I. STEREOCHEMICAL DETERMINATION. Journal of Biological Chemistry, 1968. 243(7): p. 1578-1584.
23. Tzeng, Y.-L., et al., Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase. Journal of Bacteriology, 2002. 184(9): p. 2379-2388.
24. Lu, Y.-C., W.-C. Yeh, and P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine, 2008. 42(2): p. 145-151.
25. Winning, L. and G.J. Linden, Periodontitis and systemic disease. Bdj Team, 2015. 2: p. 15163.
26. Shaddox, L.M. and C.B. Walker, Treating chronic periodontitis: current status, challenges, and future directions. Clinical, Cosmetic and Investigational Dentistry, 2010. 2: p. 79-91.
27. Tonetti, M.S., H. Greenwell, and K.S. Kornman, Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology, 2018. 89: p. S159-S172.
28. Popova, C., V. Dosseva-Panova, and V. Panov, Microbiology of periodontal diseases. A review. Biotechnology & Biotechnological Equipment, 2013. 27(3): p. 3754-3759.
29. Maekawa, T., et al., Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host & Microbe, 2014. 15(6): p. 768-778.
30. Irshad, M., et al., In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts; role of the capsule. Archivum Immunologiae et Therapiae Experimentalis, 2012. 60(6): p. 469-476.
31. L Chen, L. and J. Yan, Porphyromonas gingivalis lipopolysaccharide activated bone resorption of osteoclasts by inducing IL-1, TNF, and PGE. Vol. 22. 2001. 614-8.
32. Kassem, A., et al., Porphyromonas gingivalis Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of NF-kappaB Ligand) through Activation of Toll-like Receptor 2 in Osteoblasts. J Biol Chem, 2015. 290(33): p. 20147-58.
33. Weiler, H. and B. Isermann, Thrombomodulin. Journal of Thrombosis and Haemostasis, 2003. 1(7): p. 1515-1524.
34. Boffa, M. and M. Karmochkine, Thrombomodulin: an overview and potential implications in vascular disorders. Lupus, 1998. 7(2_suppl): p. 120-125.
35. Fink, L.M., et al., Thrombomodulin activity and localization. International Journal of Developmental Biology, 2003. 37(1): p. 221-226.
36. Wei, H.-J., et al., Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovascular Research, 2011. 92(2): p. 317-327.
37. McCachren, S.S., et al., Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 1991. 78(12): p. 3128-3132.
38. Raife, T.J., et al., Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. The Journal of Clinical Investigation, 1994. 93(4): p. 1846-1851.
39. Healy, A.M., et al., Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proceedings of the National Academy of Sciences, 1995. 92(3): p. 850.
40. Huang, H.-C., et al., Thrombomodulin-mediated Cell Adhesion INVOLVEMENT OF ITS LECTIN-LIKE DOMAIN. Journal of Biological Chemistry, 2003. 278(47): p. 46750-46759.
41. Kao, Y.-C., et al., Downregulation of Thrombomodulin, a Novel Target of Snail, Induces Tumorigenesis through Epithelial-Mesenchymal Transition. Molecular and Cellular Biology, 2010. 30(20): p. 4767.
42. Shi, C.-S., et al., Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation, 2005. 111(13): p. 1627-1636.
43. Esmon, C.T., Protein C anticoagulant system—anti-inflammatory effects. Seminars in Immunopathology, 2012. 34(1): p. 127-132.
44. Okamoto, T., et al., Thrombomodulin: a bifunctional modulator of inflammation and coagulation in sepsis. Critical Care Research and Practice, 2012. 2012.
45. Grey, S.T. and W.W. Hancock, A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. The Journal of Immunology, 1996. 156(6): p. 2256.
46. Conway, E.M., et al., The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor κB and Mitogen-activated Protein Kinase Pathways. The Journal of Experimental Medicine, 2002. 196(5): p. 565.
47. Van de Wouwer, M., et al., The lectin‐like domain of thrombomodulin interferes with complement activation and protects against arthritis. Journal of Thrombosis and Haemostasis, 2006. 4(8): p. 1813-1824.
48. Ma, C.-Y., et al., Monocytic Thrombomodulin Triggers LPS- and Gram-Negative Bacteria-Induced Inflammatory Response. The Journal of Immunology, 2012. 188(12): p. 6328.
49. Li, Y.-H., et al., The role of thrombomodulin lectin-like domain in inflammation. Journal of Biomedical Science, 2012. 19(1): p. 34.
50. Abeyama, K., et al., The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. The Journal of Clinical Investigation, 2005. 115(5): p. 1267-1274.
51. Ito, T., et al., Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008. 28(10): p. 1825-1830.
52. Cheng, T.-L., et al., Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss. Scientific Reports, 2016. 6: p. 28340.
53. Zupan, J., M. Jeras, and J. Marc, Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochemia Medica: Biochemia Medica, 2013. 23(1): p. 43-63.
54. Holtrop, M.E. and G.J. King, The ultrastructure of the osteoclast and its functional implications. Clinical Orthopaedics and Related Research, 1977(123): p. 177-196.
55. Vaananen, H.K., et al., The cell biology of osteoclast function. J Cell Sci, 2000. 113 ( Pt 3): p. 377-81.
56. Atri, C., F. Guerfali, and D. Laouini, Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 2018. 19(6): p. 1801.
57. Huang, R., et al., RANKL-induced M1 macrophages are involved in bone formation. Bone Research, 2017. 5: p. 17019.
58. Conway, E.M. Thrombomodulin and its role in inflammation. in Seminars in immunopathology. 2012. Springer.
59. Shi, C.-S., et al., Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood, 2008. 112(9): p. 3661-3670.
60. Dauphinee, S.M. and A. Karsan, Lipopolysaccharide signaling in endothelial cells. Laboratory Investigation, 2006. 86(1): p. 9.
61. Lotze, M.T. and K.J. Tracey, High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology, 2005. 5(4): p. 331-342.
62. Andersson, U., H. Yang, and H. Harris. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. in Seminars in immunology. 2018. Elsevier.
63. Gardella, S., et al., The nuclear protein HMGB1 is secreted by monocytes via a non‐classical, vesicle‐mediated secretory pathway. EMBO Reports, 2002. 3(10): p. 995-1001.
64. Scaffidi, P., T. Misteli, and M.E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002. 418(6894): p. 191.
65. Schmidt, A.M., et al., The biology of the receptor for advanced glycation end products and its ligands. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2000. 1498(2-3): p. 99-111.
66. Chen, G., et al., Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14‐and TNF‐dependent mechanisms. Journal of Leukocyte Biology, 2004. 76(5): p. 994-1001.
67. Wang, H., et al., Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine, 2004. 10(11): p. 1216-1221.
68. Deng, M., et al., The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity, 2018. 49(4): p. 740-753. e7.
69. Bonaldi, T., et al., Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO journal, 2003. 22(20): p. 5551-5560.
70. Kim, H.J., et al., Regulation of lipopolysaccharide-induced inducible nitric-oxide synthase expression through the nuclear factor-κB pathway and interferon-β/tyrosine kinase 2/Janus tyrosine kinase 2-signal transducer and activator of transcription-1 signaling cascades by 2-naphthylethyl-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline (THI 53), a new synthetic isoquinoline alkaloid. Journal of Pharmacology and Experimental Therapeutics, 2007. 320(2): p. 782-789.
71. Zheng, H., et al., RANKL Stimulates Inducible Nitric-oxide Synthase Expression and Nitric Oxide Production in Developing Osteoclasts AN AUTOCRINE NEGATIVE FEEDBACK MECHANISM TRIGGERED BY RANKL-INDUCED INTERFERON-β VIA NF-κB THAT RESTRAINS OSTEOCLASTOGENESIS AND BONE RESORPTION. Journal of Biological Chemistry, 2006. 281(23): p. 15809-15820.
72. Graves, D., et al., Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. Journal of Dental Research, 2001. 80(10): p. 1875-1879.