| 研究生: |
許榮宸 Hsu, Lung-Chern |
|---|---|
| 論文名稱: |
有機發光二極體星狀非結晶形分子的計算與構形分析 Calculation and Conformatuonal Analysis of Starburst Amorphous TPA-derived Substances for Organic Light Emitting Diode(OLED) |
| 指導教授: |
蘇世剛
Su, Shyh-Gang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 有機發光二極體 、星狀非結晶形分子 |
| 外文關鍵詞: | OLED, Starburst Amorphous TPA-derived Substances |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用DFT B3LYP/6-31g*量子力學方法計算TDATA(4,4'4"-tris (diphenylamino)triphenylamine和TDAB(1,3,5-tris(diphenylamine)benzene)
、TDAPB(1,3,5-tris(4-diphenylaminophenyl)benzene主要差異在其中心單位,TDATA以氮原子為中心、TDAPB 及 TDAB以苯環為中心;而TDAPB與TDAB差異在於中心苯環分別接triphenylamine、diphenylamine。在能階方面這些星狀非結晶形分子均呈現較高HOMO且離子化能(IP)為TDAB>TDAPB>TDATA當其於ortho、meta、para位置接甲基、氟基取代基,則發現接氟基取代基其IP會增加且meta>para>ortho,當其接甲基則TDATA、TDAPB會使離子化能降低且ortho>meta>para、而TDAB接甲基會使離子化能於ortho位置增加,而meta、para位置減少且meta>para。
在構形方面所有星狀非結晶形分子中性分子其TPA結構部份鍵長為1.4193~1.4231A0、二面角為69~720且於ortho位置由於立體障礙,無論接甲基或氟基取代基在鍵長及二面角均會產生變化。在電荷密度分析方面,我們由Mulliken 電荷密度分佈知所有星狀非結晶形分子中性分子氮原子均帶負電荷其值為-0.65 ~ -0.66,而苯環均帶正電荷其值為0.21~0.22且苯環會隨所連接氮原子數目而具有加成性,當其於ortho、meta、para位置接甲基、氟基取代基及取代基數目並不會影響其上述性質。且藉由密立根電荷密度分佈,陽離子分子與中性分子之電荷分佈差異量與分子之MO比對,我們可以驗證電荷傳輸路徑由中性分子之HOMO分佈區域傳輸至陽離子分子之HOMO分佈區域。
We used DFT B3LYP/6-31g*method to calculate TDATA(4,4'4"-tris (diphenylamino)triphenyl) and TDAB(1,3,5-tris-(diphenylamine)benzene) TDAPB(1,3,5-tris(4-diphenylaminophenyl)benzene.the main difference in its certre unit,TDATA regards atom of nitrogen as the centre.TDAPB and TDAB regards phenyl ring as the centre.TDAPB and TDAB difference lie in the centre phenyl ring connects triphenylamine and diphenylamine.In the energy level that these starburst amorphous molecular appear high HOMO and ionization potential is TDAB>TDAPB>TDATA.connect as it methyl and fluoro substituent on the ortho meta and para position is it connect fluoro substituent their IP will increase and meta>para>ortho.connect methyl substituent their TDATA and TDAPB IP will decrease and ortho>meta>para.TDAB will increase on the ortho and it will decrease on the meta and para(meta>para).In the conformatios that neutral molecule of starburst amorphous molecular that its TPA structure moiety bond length is 1.4193~1.4231A0 and dihedral angle is 69~720. because of three-dimensional obstacle connect methyl or fluoro substituent bond length and dihedral angle can produce change on the ortho position.Analyse the respect in the density of charge ,we is it kown by Mulliken charge density all nitrogen atom of neutral molecule of starburst amorphous molecular bring negative charge its value distribute -0.65~ -0.66 , and phenyl ring bring positive charge its value distribute 0.21~0.22 and phenyl ring can add get intoing with figure of atom of nitrogen,connect as it methyl and fluoro substituent and substituent figure can not influence above-mentioned nature on the ortho meta and para position.And while distributing by setting up the Mulliken charge density ,cation molecule and the neutral molecule that amount of difference distributed of charge are right compared with MO of the molecule,we can prove the charge is transmitted that the route is distributed in the HOMO area of the cation molecule from the HOMO area of the neutral molecule .
參 考 文 獻
(1)M.PoPe,H.Kallmann,P.Magnate,J.Chem.Phys.,38,2024(1963)
(2)C.W.Tang and S.A.VanSlyke,Appl.Phys.Lett.,51,913(1987)
(3)Friend,R.H.,Burns,P.L.,Holmes,A.B.,Nature.,347,539(1990)
(4)C.W.Tang., S.A.VanSlyke,and
C.H.Chen,J.Appl,Phys.,65 ,3610(1989)
(5)Guan-Ting Chen,Shui-Hsiang Su,and Meisoyokoyama,Journal of The Electrochemical Society.,153,H68(2006)
(6)Y.Shirota,K.Okumoto,H.Inada,Synth.Met.,111,387(2000)
(7)Yutaka Ohmori,Fellow,IEEE,Hirotake Kajii and Yuichi Hino,Journalof Display Technology,3,238(2007)
(8)Jianmin Shi and Ching W.Tang,Appl.Phys.Lett,80,3201 (2002)
(9)Kenji Okumoto and Yasuhiko Shirota,Chem.Mater,15,699(2003)
(10)S.A.Vanslyke,C.W.Tang,US5,061,569(1991)
(11)Paul F.Barbara,Thomas J.Meyer,Mark A.Ratuer,J.Phys.Chem,100,13148(1996)
(12)R.A.Marcus,The Journal of Chemical Physics,24,966(1956)
(13) R.A.Marcus,The Journal of Chemical Physics,43,679(1965)
(14)Bo Chao Lin,Cheu Pyeng Cheng and Zhi Ping Michael Lao,
J.Phys.Chem.A,107,5241(2003)
(15)Musubu Ichikaw,Kumiko Hibino et,Synthetic Metals,156,1383(2006)
(16)Hiroshi Inada and Yasuhiko Shirota,J.Mater.Chem,3,319 (1993)
(17)Carsten Giebeler,Homer Antoniadis et,Journal of Applied Physics,85,608(1999)
(18)W.D.Gill,J.Appl.Phys.,43,5033(1972)
(19)Yasuhiko Shirota,Tomokazu Kobata and Naoki Noma,Chemistry Letters,1145(1989)
(20)Wataru Ishikawa,Hiroshi Inada et,chemistry Letters,1731(1991)
(21)Yasuhiko Shirota,J.Mater.Chem.,10,1(2000)
(22) Yasuhiko Shirota,J.Mater.Chem.,15,75(2005)
(23)Bo-Cheng Wang,Hsien-Ren Liao et,Journal of Luminescence,124,333(2007)