簡易檢索 / 詳目顯示

研究生: 林欣穎
Lin, Hsin Yin
論文名稱: 抗STAT3鐵鉑奈米藥物對於肺癌腫瘤細胞及免疫微環境之影響
The influence of FePt-based anti-STAT3 nanodrugs on cancer cells and tumor immune microenvironment in lung cancer
指導教授: 蘇五洲
Su, Wu Chou
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 67
中文關鍵詞: STAT3非小細胞腺癌腫瘤微環境免疫細胞奈米藥物高滲透長滯留效應
外文關鍵詞: STAT3, NSCLC, Tumor microenvironment, Immune cells, Nanodrug, EPR effect
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Signal transducers and activator of transcription 3 (STAT3)是位於細胞質中的轉錄因子,經由特定的細胞激素活化後會轉入到細胞核內並引起下游訊號傳導,進而使細胞產生和癌化相關的細胞行為。研究顯示STAT3常常被發現活化在腫瘤微環境中的癌症細胞和免疫細胞,在腫瘤邊界幫助癌細胞抵禦免疫反應並且進行逃脫。因此STAT3被認為是潛力的抗癌藥物開發標的,但臨床上尚無STAT3的標靶藥被開發使用。FTY720是一種多發性硬化症的臨床免疫抑制藥物,新進研究發現FTY720也可以透過多重細胞訊息路徑抑制腫瘤細胞生長。我們先前的研究發現,FTY720可以透過抑制STAT3的活化,降低小鼠肺癌形成。因此在本研究中,我們想探討FTY720對腫瘤微環境中的免疫細胞的改變,同時開發FTY720的奈米藥物去提升FTY720的抗癌效果與改善腫瘤的治療。為了探討奈米藥物對腫瘤微環境免疫細胞的影響,我們首先建立了兩種不同模式的異種移植小鼠,分別為將路易斯氏肺癌(Lewis lung carcinoma LLC)細胞株注射到免疫健全小鼠背部皮下的模式以及將細胞株注射到左側大腿皮下的模式。在背部皮下的模式中,奈米藥物以尾靜脈注射,透過血液循環與高滲透長滯留效應(EPR effect)達到腫瘤微環境中;在左側大腿皮下的模式中,奈米藥物透過股動脈注射,不經全身血液循環而直接到達腫瘤微環境。我們比較了兩種異種移植模式中腫瘤微環境的不同與FTY720對腫瘤微環境各種免疫細胞的影響,我們發現巨噬細胞的極化分型(polarization)、殺手T細胞(Cytotoxic T cell)、輔助型T細胞(T-Helper Cell)和自然殺手細胞(Natural killer cell)分佈均受影響,但FTY720單獨使用對治療腫瘤進程的效果有限。因此,我們利用PLGA與FePt兩種不同性質奈米材料,開發新型FTY720奈米藥物作為改善腫瘤免疫微環境和腫瘤進程的策略。我們發現PLGA製程奈米藥物(PLGA-FTY720)有較大流失率,因此後續使用鐵鉑(FePt)奈米顆粒作為FTY720的載體(FePt@FTY720)。初步測定FePt@FTY720在體外細胞的耐受性後,我們進一步比較藥物在奈米化前後對腫瘤微環境免疫細胞的影響。在靜脈與動脈注射給予FTY720奈米藥物的模式中,我們都發現FTY720可以增強腫瘤微環境對FePt奈米材質的吸收。於體內動物實驗和體外細胞實驗中,利用組織染色和流式細胞儀進行免疫細胞定量分析,我們發現FePt@FTY720相較未包埋奈米化FePt的FTY720,對促進腫瘤生長的M2巨噬細胞分化有較佳的抑制效果,而對於抑制腫瘤的M1型巨噬細胞有增加的現象。在動物實驗中,我們也發現促進腫瘤生長的調節性T細胞於FePt@FTY720 處理後24小時開始有下降的趨勢。此外我們也發現體外處理FePt@FTY720奈米藥物對於T淋巴球細胞活化所釋放的干擾素-γ分泌有抑制的效果。在本篇研究中,我們成功合成以鐵鉑奈米顆粒為載體的FTY720藥物,並且建立了適合的異種移植小鼠動物模式,探討奈米藥物對腫瘤微環境免疫細胞改變,研究中我們釐清了FTY720奈米藥物和腫瘤免疫細胞的相關性,此外,我們開發的FePt@FTY720奈米藥物,可以有效減少FTY720對動物體的副作用、提升藥物進入腫瘤的效果與免疫抑制的作用,由於鐵鉑奈米具放射線增敏劑的特性,本研究在FePt@FTY720對免疫細胞的探討,將有助後續FePt@FTY720合併放射線治療或免疫治療對於改善癌症進程的研究。

    Signal transducers and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that is translocated into nucleus upon cytokine stimulation or oncogenic activation. Activated STAT3 is often found in tumor cells and inflammatory cells particularly on the invasive edge of tumors microenvironment, suggesting STAT3 regulates processes that are crucial for tumor progression in the microenvironment. Therefore, STAT3 is considered as a novel cancer drug target. We previously found that inhibition of STAT3 activation by S1PR1 antagonist (FTY720) decreased lung cancer formation in animal model. In this study, we plan to clarify the role of FTY720 on changes of immune cells of tumor microenvironment and develop novel FTY720 nanodrugs to improve cancer treatment. We first established two of the Lewis lung carcinoma (LLC1) cells xenograft tumor models in immunocompetent mice. In subcutaneous flank tumor model, administrated anti-cancer drugs could reach to tumor sites through EPR effects via intravenous injection. And subcutaneous thigh tumor model was established to investigate the effects that anti-cancer drugs could be delivered directly to the tumor site without whole blood circulation. We compared the immune cells composition in the tumor microenvironment of these two models. We found macrophage polarization and T cell population were affected by FTY720 treatment, however, FTY720 treatment alone did not significantly suppress tumor growth in the subcutaneous flank tumor model. Therefore, we then development FTY720 nanodrugs by using PLGA or FePt nanoparticle to improve drug efficacy and cancer treatment. We found PLGA-FTY720 nanodrug was difficult to scale up, therefore, Fept@FTY720 nanodrugs was used for further study. We found that FTY720 could enhance FePt nanoparticle uptake in the tumor microenvironment and M1 macrophage population was elevated by FePt@FTY720 treatment. On the contrary, M2 macrophage population was reduced by FePt@FTY720 treatment, indicating the immune suppression function of FePt@FTY720 in tumor microenvironment. In this study, we have successfully synthesized FePt@FTY720 nanodrugs and established suitable xenograft tumor model for investigating immune cells change by nanodrugs. In this study, we improved drug efficacy of FTY720 on immune suppression function and reduced the FTY720 side effect by FePt nanoparticle. We further clarified the relationship between FePt@FTY720 nanodrug and immune cells changes. Since FePt material has radio sensitization characteristic, combination therapeutic of FePt@FTY720 with radiotherapy or immune therapy were worthy to be investigated.

    中文摘要 I Abstract III Acknowledgements V Abbreviation list 1 Chapter 1 Introduction 5 1-1 Lung cancer and STAT3 6 1-2 Tumor immune microenvironment and STAT3 7 1-3 Immune cells and tumor microenvironment 8 1-4 Fingolimod (FTY720) 8 1-5 EPR Effect and Nanoparticles 9 1-6 FePt nanoparticles 9 1-7 Poly (lactic-co-glycolic acid) (PLGA) nanoparticles 10 1-8 Nanomedicine and cancer immunity 10 Rationales 11 Specific aims 12 Aim 1: To understand tumor immune microenvironment of Lewis lung cancer cell (LLC) xenograft. 12 Aim 2: To study the effects of FTY720 on changes of immune cells in vitro and in vivo. 12 Aim 3: Evaluating efficacy of anti-STAT3 nanodrug in LLC tumor model. 12 Chapter 2 Materials and Methods 13 2-1 Materials 14 2-1-1 List of flow cytometry antibodies 14 2-1-2 List of IHC primary antibodies 15 2-1-3 List of IHC secondary antibodies 16 2-2 Methods 17 2-2-1 Cell culture 17 2-2-2 Animal model 17 2-2-3 Immunohistochemistry Staining 17 2-2-4 Flow cytometry analysis 18 2-2-5 Preparation of PLGA nanoparticles (PLGA NPs) 18 2-2-6 Preparation of FePt (6nm) nanoparticles 18 2-2-7 Iron stain 19 2-2-8 Cytotoxic analysis- MTT assay 19 2-2-9 Colony formation assay 19 2-2-10 Histology 19 2-2-11 ELISA assay 20 2-2-12 Isolation of primary tumor cells 20 2-2-13 Statistical analysis 20 Chapter 3 Results 21 3-1 Establishment two xenograft tumor models in C57BL/6 immunocompetent mice by subcutaneous injection of lung cancer cells. 22 3-2 The changes of tumor immune microenvironment and tumor response by FTY720 treatment in LLC subcutaneous flank tumor model. 23 3-3 Study of macrophage M1/M2-polarization after FTY720 treatment. 24 3-4 Development of FTY720 nanodrugs by using PLGA and FePt two materials. 25 3-5 Influence of the FePt nanoparticles and FePt@FTY720 in LLC cell line. 26 3-6 Classification of M1 and M2 type macrophage polarized by treatment of FePt nanoparticle, FTY720 and FePt@FTY720 26 3-7 Evaluation of FePt@FTY720 accumulation in tumor microenvironment and its effects on immune cells change. 28 3-8 The changes of tumor immune microenvironment after intraarterial injection FePt@FTY720 treatment in LLC xenograft tumor. 29 3-9 The functional activation of T lymphocyte after FePt nanoparticle, FTY720 and FePt@FTY720 treated in vitro. 30 Chapter 4 Discussion 31 Conclusion 37 References 39 Figures 42

    1. Frank, D.A., STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett, 2007. 251(2): p. 199-210.
    2. Čokić, V.P., et al., Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms. Mediators Inflamm, 2015. 2015: p. 453020.
    3. Johnson, D.E., R.A. O'Keefe, and J.R. Grandis, Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018. 15(4): p. 234-248.
    4. Chang, Q., et al., The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia, 2013. 15(7): p. 848-62.
    5. Dutta, P., et al., Role of STAT3 in lung cancer. Jakstat, 2014. 3(4): p. e999503.
    6. Rébé, C. and F. Ghiringhelli, STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel), 2019. 11(9).
    7. Zou, S., et al., Targeting STAT3 in Cancer Immunotherapy. Molecular Cancer, 2020. 19(1): p. 145.
    8. Yu, H., D. Pardoll, and R. Jove, STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 2009. 9(11): p. 798-809.
    9. Kortylewski, M., et al., Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 2005. 11(12): p. 1314-1321.
    10. Kortylewski, M. and H. Yu, Role of Stat3 in suppressing anti-tumor immunity. Current opinion in immunology, 2008. 20(2): p. 228-233.
    11. Yu, H., M. Kortylewski, and D. Pardoll, Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol, 2007. 7(1): p. 41-51.
    12. Bonaventura, P., et al., Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol, 2019. 10: p. 168.
    13. Loyher, P.-L., et al., Macrophages of distinct origins contribute to tumor development in the lung. Journal of Experimental Medicine, 2018. 215(10): p. 2536-2553.
    14. Jorgovanovic, D., et al., Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 2020. 8(1): p. 49.
    15. Guttman, O. and E. Lewis, M2-like macrophages and tumor-associated macrophages: overlapping and distinguishing properties en route to a safe therapeutic potential. Integrative Cancer Science and Therapeutics, 2016. 3.
    16. Li, C., et al., Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer, 2020. 19(1): p. 116.
    17. Strader, C.R., C.J. Pearce, and N.H. Oberlies, Fingolimod (FTY720): A Recently Approved Multiple Sclerosis Drug Based on a Fungal Secondary Metabolite. Journal of Natural Products, 2011. 74(4): p. 900-907.
    18. White, C., et al., The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget, 2016. 7(17).
    19. Baer, A., W. Colon-Moran, and N. Bhattarai, Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Scientific Reports, 2018. 8(1): p. 10910.
    20. Azuma, H., et al., Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer research, 2002. 62(5): p. 1410-1419.
    21. Estrada-Bernal, A., et al., Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro-oncology, 2012. 14(4): p. 405-415.
    22. Hung, J.-H., et al., FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C δ signaling. Cancer research, 2008. 68(4): p. 1204-1212.
    23. Neviani, P., et al., FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome–positive acute lymphocytic leukemia. The Journal of clinical investigation, 2007. 117(9): p. 2408-2421.
    24. Ohue, Y. and H. Nishikawa, Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci, 2019. 110(7): p. 2080-2089.
    25. Pchejetski, D., et al., FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer research, 2010. 70(21): p. 8651-8661.
    26. Yasui, H., et al., FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer research, 2005. 65(16): p. 7478-7484.
    27. Zhang, N., et al., FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: a protective role of autophagy. Autophagy, 2010. 6(8): p. 1157-1167.
    28. Liang, J., et al., Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell, 2013. 23(1): p. 107-20.
    29. Pchejetski, D., et al., FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res, 2010. 70(21): p. 8651-61.
    30. Yin, L. and Z. Zhong, 1.3.8B - Nanoparticles, in Biomaterials Science (Fourth Edition), W.R. Wagner, et al., Editors. 2020, Academic Press. p. 453-483.
    31. Yhee, J.Y., et al., The EPR Effect in Cancer Therapy, in Cancer Targeted Drug Delivery: An Elusive Dream, Y.H. Bae, R.J. Mrsny, and K. Park, Editors. 2013, Springer New York: New York, NY. p. 621-632.
    32. Luo, Y.-H., L.W. Chang, and P. Lin, Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. BioMed research international, 2015. 2015.
    33. Shi, Y. and T. Lammers, Combining Nanomedicine and Immunotherapy. Acc Chem Res, 2019. 52(6): p. 1543-1554.
    34. Yin, W.-m., et al., Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacologica Sinica, 2020. 41(7): p. 902-910.
    35. Fu, X., et al., Subcutaneous inoculation position affects the immune environment in CT26 carcinomas. Biochemical and Biophysical Research Communications, 2019. 512(2): p. 244-249.
    36. Baer, A., W. Colon-Moran, and N. Bhattarai, Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Sci Rep, 2018. 8(1): p. 10910.
    37. Li, Y., et al., Combination treatment of FTY720 and cisplatin exhibits enhanced antitumour effects on cisplatin-resistant non-small lung cancer cells. Oncol Rep, 2018. 39(2): p. 565-572.
    38. Spranger, S., et al., Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer, 2014. 2: p. 3.
    39. Oshi, M., et al., M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Scientific Reports, 2020. 10(1): p. 16554.
    40. Van Ginderachter, J.A., et al., Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology, 2006. 211(6-8): p. 487-501.
    41. Bao, Z., et al., FePt nanoparticles: a novel nanoprobe for enhanced HeLa cells sensitivity to chemoradiotherapy. RSC Advances, 2016. 6(41): p. 35124-35134.
    42. Marvaso, G., et al., Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro. Cancer Biology & Therapy, 2014. 15(6): p. 797-805.
    43. Agoro, R., et al., Cell iron status influences macrophage polarization. PLoS One, 2018. 13(5): p. e0196921.
    44. Lei, X., et al., Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett, 2020. 470: p. 126-133.
    45. Wellenstein, M.D. and K.E. de Visser, Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity, 2018. 48(3): p. 399-416.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE