| 研究生: |
林秉燁 Lin, Bing-Yeh |
|---|---|
| 論文名稱: |
多層金屬內連線於循環熱負載下之應力分析 Stress Analysis of Multi-Level Interconnection under Cyclic Thermomechanical Loads |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 多重內連線結構 、熱應力 、應變能釋放率 、虛擬裂紋閉合法 、有限元素分析 |
| 外文關鍵詞: | Multi-level Interconnects, Thermal Stress, Strain Energy Release Rate, Virtual Crack Closure Technique, Finite Element Analysis |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著技術的進步,微系統的微縮變得越來越重要。為了解決在內連線結構中電阻-電容延遲的問題,因此發展出銅或銅合金導線製程,但也衍生出其他問題。由於導線與介電層間材料性質之差異,使得內連線結構在製程中升溫、降溫過程常引發應力集中的問題,高應力可能會造成界面脫層、裂紋或是誘發孔洞現象,降低元件的可靠度。另外,異質材料間之界面接合強度也是影響內連線結構可靠度的重要因素。因此,內連線結構之可靠度是一重大關鍵,若能預測應力分布以及破壞行為,將可為製程設計提供相當重要的資訊。
本論文將利用現行的商用有限元素分析軟體ANSYS來進行模擬分析。建立內連線結構受熱模型,進行整體的應力場分析。藉此得到製程溫度、幾何參數以及低介電常數材料性質對內連線結構之影響。接著藉由應力場的分佈,評估局部區域的模型,引進雙材料界面破壞力學之觀念,以數值模擬判斷發生脫層破壞之可能性。最後,以最小化應力值為目標,更改內連線結構的幾何參數,最佳化層內連線的結構。
從研究結果發現,因材料彼此之間熱膨脹係數及彈性模數的不匹配,對在升/降溫過程中產生之殘留應力有顯著的影響。結果顯示低介電常數材料與金屬導線的熱膨脹不匹配和金屬導線之間距是影響應力分布的重要因素,且內連線結構應力亦會隨著低介電常數材料之楊氏模數的降低或熱膨脹係數的提高而上升,使得裂紋開裂現象的機率大大提高,降低元件的可靠度。故在設計內連線結構時,可以選用較高楊氏模數與熱膨脹係數較低的材料作為介電層,以提高元件的可靠度。另外,較低的製程溫度也對改善可靠度有正面的影響。以上結果可以提供開發者作為設計的參考依據,以達最佳化的設計之目的,並縮短開發之時間。
With the development of technology, scaling of microsystem has become more and more important. In manufacturing processing, using copper wire for connecting each micro-device and constructing logical circuit to reduce R-C time delay is a major technique. However, during fabrication, the thermo-mechanical mismatch between materials generates high stresses, which cause the generation of stress-induce voiding, cracks, and interface delaminations. These defects strongly affect the reliability of integrated circuit devices. In addition, the interfacial bonding strength between bi-materials also plays a significant role in reliability of microsystem. As a result, the reliability of interconnect structures becomes one major concern of modern microelectronics.
This thesis utilizes mechanics of materials, fracture mechanics, and finite element method to analyze cracking and interfacial delamination of thin films and interconnect structures, as well as for evaluating that the stress and energy release rate within the structures under cyclic thermal loadings. Parametric studies for investigating the sensitivity of each physical parameter like temperature, geometry parameters and properties of low-k materials on the stress generation, strain energy release rate, and crack growth are presented. Finally, optimize size parameters of the interconnect structure to minimize stresses.
The results show that thermal mismatch between different materials and spaces on wires are significant factors for generating high stresses. It is also found that selecting the low-k materials with higher Young's modulus and lower coefficient of thermal expansion could avoid causing high stress. Lower processing temperature could improve the reliability of interconnect structures, and smaller energy release rate could prevent interfacial delamination of thin films. The study results should be useful for providing engineers the conceptual design access of interconnect structures, and to reduce development time.
[1] T. Ye, Z. Suo and A. G. Evans, "Thin film cracking and the roles of substrate and interface," International Journal of Solids and Structures, vol. 29, pp. 2639-2648, 1992.
[2] J. L. Beuth and N. W. Klingbeil, "Cracking of thin films bonded to elastic-plastic substrates," Journal of the Mechanics and Physics of Solids, vol. 44, pp. 1411-1428, 1996.
[3] T. Y. Tsui, A. J. M. and J. J. Vlassak, "Constraint effects on thin film channel cracking behavior," Journal of Materials Research, vol. 20, pp. 2266-2273, 2005.
[4] P. A. Flinn, A. S. Mack, P. R. Bresser, and T. N. Marieb, "Stress-induced void formation in metal lines," MRS Bulletin, vol. 18, pp. 26-35, 1993.
[5] Y. L. Shen, “Modeling of Thermal Stresses in Metal Interconnects Effects of Line Aspect Ratio,” Journal of Applied Physics, vol. 82, No. 4, pp 1578-1581, 1997.
[6] Ennis T. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, Electromigration Reliability Issues in Dual-damascene Cu Interconnections,” IEEE Transactions on Reliability, vol. 51, No. 4, pp. 403-419, 2002.
[7] J. M. Paik, Hyun Park, and Young-Chang Joo, “Effect of Low-k Dielectric on Stress and Stress-induced Damage in Dual-Damascene Cu Interconnects,” Microelectronic Engineering, vol. 71, pp. 348-357, 2004.
[8] K. C. Chang, Y. Li, C. Y. Lin, and M. J. Lii, "Design guidance for the mechanical reliability of low-k flip chip BGA package," in International Microelectronics and Packaging Society Conference, Kaohsiung, Taiwan, October, 2004.
[9] C. C. Chiu, C. C. Lee, T. L. Chou, C. C. Hsia, and K. N. Chiang, "Analysis of Cu/low-k structure under back end of line process," Microelectronic Engineering, vol. 85, pp. 2150-2154, 2008.
[10] C. C. Lee, T. L. Chou, C. C. Chiu, C. C. Hsia, and K. N. Chiang, "Cracking energy estimation of ultra low-k package using novel prediction approach combined with global–local modeling technique," Microelectronic Engineering, vol. 85, pp. 2709-2084, 2008.
[11] H. Mei, Y. Pang and R. Huang, "Influence of interfacial delamination on channel cracking of brittle thin films," International Journal of Fracture, vol. 148, pp. 331-342, 2007.
[12] J. M. Ambrico and M. R. Begley, “The role of initial flaw size, elastic compliance and plasticity in channel cracking of thin films,” Thin Solid Films, vol. 419, pp. 144-153, 2002.
[13] K. S. Chen, J. Y. Chen, and S. Y. Lin, "Fracture analysis of thick plasma-enhanced chemical vapor deposited oxide films for improving the structural integrity of power MEMS," Journal of Micromechanics and Microengineering, vol. 12, pp. 714-722, 2002.
[14] J. W. Hutchinson and Z. Suo, "Mixed mode cracking in layered materials," Applied Mechanics, vol. 49, pp. 64-187, 1992.
[15] 莊達人,VLSI製造技術,高立圖書有限公司出版,2002年。
[16] M. T. Bohr, “Intel's 90 nm technology: Moore's law and more,” Intel Developer Forum, vol. 3, pp. 67-87, 2002.
[17] Yosi Shacham Diamand and Sevgey Lopatin, “Integrated electroless metallization for ULSI,” Electrochimica Acta, Vol. 44, pp. 3639-3649, 1999.
[18] P. C. Andricacos, “Copper on-chip interconnections a breakthrough in electrodeposition to make better chips,” The Electrochemical Society Interface, pp. 32-37, 1990.
張勁燕,深次微米矽製程技術,五南出版社,2002年。
[19] D. Broek, Elementary Engineering Fracture Mechanics, Springer, 1982.
[20] A. Griffith, "The phenomena of rupture and flow in solids," Philosophical Transactions of the Royal Society of London, vol. 221, pp. 163-198, 1921.
[21] G. R. Irwin, "Analysis of stress and strain near the end of crack traversing a plate," Journal of Applied Mechanics, vol. 24, pp. 361-364, 1957.
[22] E. E. Gdoutos, Fracture mechanics: an introduction, Kluwer Academic Publishers, 2005.
[23] J. R. Rice, "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks," Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.
[24] J. J. Wang, I. G. Wright, K. C. Liu, M. Lance, S. Sengupta, and R. L. Xu, "An innovative technique for thin film interface toughness research," International Journal of Fracture, vol. 15, pp. 2041~2069, 2004.
[25] J. Dundurs, "Edge bonded dissimilar orthogonal elastic wedges," Journal of Applied Mechanics, vol. 36, pp. 650-652, 1969.
[26] E. F. Rybicki and M. F. Kanninen, "A finite element calculation of stress intensity factors by a modified crack closure integral," Engineering Fracture Mechanics, vol. 9, pp. 931-938, 1977.
[27] X. Chen, Y. C. Lina, X. Liu, and G.-Q. Lub, "Fracture mechanics analysis of the effect of substrate flexibility on solder joint reliability," Engineering Fracture Mechanics, vol. 72, pp. 2628-2646, 2005.
[28] Leski, "Implementation of the virtual crack closure technique in engineering FE calculations," Finite Elements in Analysis and Design, vol. 43, pp. 261-268, 2007.
[29] R. M. Marat-Mendesa and M. M. Freitas, "Failure criteria for mixed mode delamination in glass fibre epoxy composites," Composite Structures, vol. 92, pp. 2292-2298, 2010.
[30] T. Belytschko, N. Moes, and J. Dolbow, "A finite rlement method for crack growth without remeshing," INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 46, pp. 131-150, 1999.
[31] K. K. Lee, J. He, A. Singh, and B. Kim, "Benzocyclobutene (BCB) based intracortical neural implant," in 2003 International Conference on MEMS- NANO and Smart Systems (ICMENS'03), pp. 4118-422, 2003.
[32] M. Kohno, "Low dielectric constant materials," Journal of Photopolymer Science and Technology, vol. 12, pp. 189-192, 1999.
[33] 李輝煌,ANSYS工程分析-基礎與觀念,高立圖書有限公司出版,2005年。
[34] H. H. Lee, Finite Element Simulations with ANSYS Workbench 12, GOTOP Information Inc., 2010.
[35] ANSYS Structural Analysis Guide, Release 12.0, ANSYS Inc., 2009.
[36] ANSYS Theory Reference for ANSYS and ANSYS Workbench, Release 12.0, ANSYS Inc., 2009.
[37] ANSYS Engineering Data Help for Workbench, Release 12.0, ANSYS Inc., 2009.
[38] Hong-peng Lui, Chih-Kuang Yu, and Sheng-Tsai Wu, “Influence of Delamination of Epoxy/Dielectric Interfaces on Pattern Shift and Passivation Cracking under Aeronautical Conditions,” 26th IEEE SEMI-THERM Symposium, pp. 47-51, 2003.
[39] Ray lannurzelli, “Pattern Shifting Analyses of Micro-structures of IC Package,” Characterization and Metrology for VLSI Technology, pp. 431-436, 2004.
[40] V. Sukharev, “Stress Modeling for Copper Interconnect Structures,” Materials for Information Technology, pp. 251-264, 2007.
[41] B. Wunderle, R. Mrossko, O. Wittler, E. Kaulfersch, P. Ramm, B. Michel, and H. Reichl, “Thermo-mechanical reliability of 3D-integrated microstructures in stacked silicon,” in Mater. Res. Soc. Symp. Proc., 2007, p. 970.
[42] J. U. Knickerbocker, “Development of next generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection,” IBM J. Res. Develop., vol. 49, no. 5, pp. 725–753, 2005.
[43] P. A. Miranda and A. J. Moll, “Thermo-mechanical characterization of copper through-wafer interconnects,” presented at the Electron. Compon. Technol. Conf., San Diego, C. A., 2006.
[44] S. Burkett, L. Schaper, T. Rowbotham, J. Patel, T. Lam, U. Abhulimen, D. D. Boyt, M. Gordon, and T. Cai, “Material aspects to consider in the fabrication of through-silicon vias,” Mater. Res. Soc. Symp. Proc., pp. 970–.984, 2007.
[45] N. Takana, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, and K. Takahashi, “Mechanical effects of copper through-vias in a 3D die-stacked module,” in Electron. Compon. Technol. Conf., San Diego, CA, 2002, pp. 473-479.
[46] D. T. Read, Y. W. Cheng, and R. Geiss, “Morphology, microstructure, and mechanical properties of a copper electrodeposit,” Microelectron. Eng., vol. 75, pp. 63-70, 2004.
[47] M. Kohno, "Low dielectric constant materials," Journal of Photopolymer Science and Technology, vol. 12, pp. 189-192, 1999.
[48] M. Huang and Z. Suo, “Thin film cracking and ratcheting caused by temperature cycling,” Materials Research Society, Vol. 15, No. 6, pp. 1239-1242, 2000.
[49] S. Oizumi, N. Imamura, H. Tabata, and H. Suzuki, “Stress Analysis of the Silicon Chip-Plastic Encapsulant Interface,” American Chemical Society Symposium, Vol. 346, pp. 897-910, August 26, 1987.
[50] Thomas M. Moore, Cheryl D. Hartfield, J. Mark Anthony, Byron T. Ahlburn, Paul S. Ho, and Mike R. Miller, “Mechanical Characterization of Low-K Dielectric Materials,” Characterization and Metrology for ULSI Technology, pp. 431-436, 2004.
[51] K. Lu, X. Zhang, S. Ryu, J. Im, R. Huang, and P. Ho, “Thermo-mechanical reliability of 3-D ICs containing through-silicon-vias,” Electronic Components and Technology Conference, pp. 630-634, 2009.
[52] Kuan-Hsun Lu, Suk-Kyu Ryu, Jay Im, Rui Huang and Paul S. Ho, “Thermomechanical Reliability of Through-Silicon Vias in 3D Interconnects,” Reliability Physics Symposium (IRPS), pp.520-538, 2008.
[53] 郭蒨如,開裂與界面脫層破壞分析於薄膜及內連線結構之研究與應用,國立成功大學機械工程系碩士論文,95年7月。
[54] J. Y. Lai, Mechanics, mechanisms, and modeling of the chemical mechanical polishing process, Ph.D. dissertation, Department of Mechanical Engineering, MIT, USA, 2001.