簡易檢索 / 詳目顯示

研究生: 蔡佳霖
Tsai, Jia-lin
論文名稱: 脈搏訊號及心電圖之時頻分析
Time-Frequency Analyses of Pulse Data and Electrocardiogram
指導教授: 鄭育能
Jeng, Y.N.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 94
中文關鍵詞: 傅立葉正弦頻譜傅立葉正弦時頻圖時間序列
外文關鍵詞: Fourier sine spectrogram, time series data, Fourier sine spectrum
相關次數: 點閱:85下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用傅立葉正弦頻譜和傅立葉正弦時頻圖產生器,配合王等人所發展的心血管動脈內之壓力波共振理論,以討論研究動脈訊號。新時頻產生器包括:使用疊代式高斯平滑法移除非週期和極低頻部份,在用單調式三次方分段內插法,幫忙定出所剩的週期性部份數據兩端的零點,經內插重新分佈點及奇函數轉換,以快速傅立葉級數轉換法,求取傅立葉正弦頻譜後。隨後對頻譜取有限的帶狀頻帶後,對頻譜做快速傅立葉級數轉換法逆轉換,求得傅立葉正弦時頻之實數部份,再應用希爾伯特轉換式求振幅並畫出時頻圖。本文分析四組實驗數據。第一組是使用脈聲儀系統量取手腕動脈壓力訊號,對象是運動後的手腕脈博訊號,第二、三組是分析作全身和局部麻醉的人工膝關節手術者之訊號,訊號用侵入式的脈博壓力量測儀(ABP)量手腕動脈訊號,以及心電圖信號(ECG)。第四組是剖婦產之脈波訊號分析,包括ABP和ECG訊號。這些訊號都可以用原始數據,看到頻譜圖和時頻圖的頻率和振幅變化,做合理的說明。從第一組數據可以證明王等人的共振理論,可以合理解釋運動後的恢復期內,各主要器官的生理運作。本文也發現局部麻醉會阻礙神經訊號的傳遞,使自主神經系統不能作出正常反應。在臨界狀態下,待產孕婦的ECG訊號有明顯缺陷時,ABP訊號仍能正常合理的運作,驗證了人體系統的驚人容錯能力。本研究證明傳統的中國醫學把脈技術可以用在現代數據處理分析與現代醫學技術上,利用健診偵測儀器及頻譜圖和時頻圖,可以提供有用分析工具,以促進中西醫之合併。

    This dissertation discussed the artery pulse data by applying the Fourier sine spectrum and Fourier sine spectrogram together with the pressure wave oscillation model in cardiovascular proposed by Wang et al. In order to grasp the pure spectral information, the non-sinusoidal part is removed by applying the iterative Gaussian smoothing method. In the remaining sinusoidal part, zero points around the two ends are identified by a searching procedure and interpolation. After dropping segments beyond two the zero ends, the corresponding Fourier sine spectrum is obtained by performing an odd function mapping. The time-frequency transform then imposes finite bandwidth Gaussian window upon the Fourier sine spectrum centered at a given frequency. The inverse Fourier transform of the band-pass limited spectrum gives the real part of the resulting spectrogram. In this paper four set of test data were analyzed. The first group is radial artery pressure signals taking after 20 minutes exercises of 15 young men in terms of the sonocardiovascular system. The second and third groups are signals of patients who were undergoing knee joint replacement surgery by the local and general anesthesia. The signals were measured invasively by the Arterial Blood Pressure (ABP) system at the wrist artery and the ECG. The fourth group is the pulse signal of a caesarean section including ABP and ECG signals. All of these signals can be reasonably interpreted with the help of overall inspection upon the original data and mean variation of frequency and amplitude of spectrum over finite time intervals and spectrogram. The first test shows that the pressure wave oscillation model of Wang et. al. can reasonably explain the performance of human’s main organ in the recovery period after a violent exercise. This study found that the local anesthesia has the effect of seriously blocking the nerve transmission and cause the automatic nervous system failed to response properly. This study also showed that, under the critical conditions, when the ECG signal of a parturient was of obviously defective, her ABP signal will still falls within the normal range. It substantiated the tremendous fault tolerance capabilities of a human body. This study proved that the technology of pulse-taking in traditional Chinese medicine can be applied in modern medication and be analyzed by modern data processing method. The utilization of spectrum and spectrogram generated by diagnostic instruments has a great potential to enhance the cooperation of the traditional Chinese medicine and Western medicine.

    中文摘要 .............................................I 英文摘要 ...........................................III 誌謝..................................................V 目錄................................................VII 圖目錄...............................................XI 符號說明............................................XVI 第一章 序論...........................................1 1.1 研究動機..........................................2 1.2 研究目的..........................................3 1.3文獻回顧...........................................4 第二章 實驗方法.......................................6 2.1實驗器材...........................................6 2.2儀器實驗步驟.......................................7 2.2.1 脈聲儀量測手腕動脈訊號..........................7 2.2.2侵入式手腕血壓訊號量測...........................8 2.2.3 心電圖訊號......................................9 第三章 理論分析.....................................11 3.1 共振理論.........................................11 3.2 修正型單調性三次方分段內插法.....................12 3.3 疊代式濾波器法...................................13 3.4 低誤差傅立葉正弦頻譜法...........................18 3.5小波法-Morlet轉換式...............................20 3.6 強化的Morlet轉換式...............................22 3.7 希爾伯特(Hilbert)轉換式..........................23 3.8 Gabor轉換式......................................23 3.9 新時頻圖(spectrogram)產生器......................25 第4章 結果與討論.....................................28 4.1脈搏感測器的頻率驗證..............................28 4.2 新時頻圖與最佳的Gabor轉換式結果比較..............28 4.3 心電圖、脈聲儀和動脈血壓訊號之比較..............29 4.4 運動後狀態之脈波訊號.............................31 4.4.1自然狀態的原始波形、頻譜圖、時頻圖..............32 4.4.2運動後原始波形、頻譜圖、時頻圖..................33 4.4.3 運動狀態的平均偏差量和相對變動率...............35 4.4.4上述討論運動後狀態之結論........................36 4.5人工膝關節置換手術ABP與ECG訊號分析之一般麻醉......37 4.5.1 綁住和鬆放止血帶之時間點說明...................37 4.5.2第一隻腳綁住止血帶ABP訊號與ECG訊號..............38 4.5.3第一隻腳鬆開止血帶ABP訊號與ECG訊號..............39 4.5.4第二隻腳綁止血帶ABP訊號與ECG訊號................40 4.5.5第二腳鬆開止血帶ABP訊號與ECG訊號................40 4.5.6 麻醉藥消退期的ABP訊號與ECG訊號.................41 4.5.7 振幅對時間的變化...............................41 4.5.8頻率對時間的變化................................42 4.6人工膝關節置換手術的ABP與ECG訊號分析之半身和局部麻醉.43 4.6.1第一次綁住止血帶ABP訊號與ECG訊號................43 4.6.2第一腳鬆開與第二隻腳綁住止血帶ABP訊號與ECG訊號..44 4.6.3第二隻腳鬆開止血帶ABP訊號與ECG訊號..............44 4.6.4一般麻醉和半身與局部麻醉之結論..................45 4.7 一般剖腹產.......................................46 4.7.1剖腹產手術開始十分鐘訊號........................46 4.7.2小孩出生前後訊號................................47 4.7.3剖腹產手術結束前十分鐘訊號......................48 4.7.4 剖腹產手術之結論...............................48 第5章 結論與未來工作.................................49 參考文獻.............................................51 結果附圖.............................................56 自述.................................................93 著作權聲明...........................................94

    1.W. K. Wang, Y. Y. Lo, Y. Chiang, T. L. Hsu and Y. Y. Wang Lin, “Resonance of Organs with the Heart,” In Biomedical Engineering – An International Symposium, ed. Young, W. J. Hemisphere, Washington, DC. USA, pp.259-268, 1989.
    2.S. T. Young, W. K. Wang, L. S. Chang, and T. S. Kuo, “Specific Frequency Properties of the Renal and the Superior Mesenteric Arterial Beds in Rats,” Cardiovas Res. Vol. 23, pp.265-467, 1989.
    3.M. Y. Jan, H. Hsiu, T. L. Hsu, W. K. Wang, and Y. Y. Wang, “The Physical Conditions of Different Organs Are Reflected Specifically in the Pressure Pulse Spectrum of the Peripheral Arterial,” Cardiovascular Engineering: An Int. J., vol. 3. no.1, pp.21-29, 2003.
    4.S. T. Young, W. K. Wang, L. S. Chang and T. S. Kuo, “The Filter properties of the Arterial Beds of Organs in Rats,” Acta Physiol Scand., vol. 145, pp.401-406, 1992.
    5.Y. Y. Wang Lin, M. Y. Jan, C. S. Shyu, C. A. Jiang, and W. K. Wang, “The Natural Fre-quencies of the Arterial System and Their Relation to the Heart Rate,” IEEE Trans. Biomed. Eng., vol. 51. no.1, pp. 193-195, Jan. 2004.
    6.T. L. Hsu, P. T. Chao, H. Hsiu, W. K. Wang, S. P. Li and Y. Y. Lin Wang, “Organ-Specific Ligation-Induced Changes in Harmonic Components of the Pulse Spectrum and Regional Vasoconstrictor Selectivity in Wistar Rats,” Experimental Physiology, vol. 91, no.1, pp.163-170, 2006.
    7.Y. C. Kuo, T. Y. Chiu, M. Y. Jan, J. G. Bau, S. P. Li, W. K. Wang and Y. Y. Wang, “Losing Harmonic Stability of Arterial Pulse in Terminally Ill Patients, Clinical Methods and Pharmachology,” Blood Pressure Monitoring, vol. 9. no. 5, pp.255-258, Oct. 2004.
    8.Y. C. Su, K. F. Huang, Y. H. Chang, T. C. Li, W. S. Huang, and J. G. Lin, “The Effect of Fasting on the Pulse Spectrum,” American J. of Chinese of Medicine, Summer-Fall, pp.1-5, 2000.
    9.Y. N. Jeng, “Time-Frequency Plot of a Low Speed Turbulent Flow via a New Time Frequency Transformation,” Proc. 16th Combustion Conf., Paper No.9001, Taiwan, April 2006.
    10.Y. N. Jeng and Y. C. Cheng, “A Time-Series Data Analyzing System Using a New Time–Frequency Transform”, Proc. 2006 International Conference on Innovative Computing, Information and Control, vol. 1, Paper No. 0190, pp.525-528, Sept. 30, 2006.
    11.F. M. Yu and S. C. Wang, “Design of a Sonocardiography System and Its Application in the Diagnostic of the Cardiovascular Disease,” Proceedings of 2006 TSB conference, Taiwan, Paper No. TSB2006-O-205, pp.16, Dec. 2006.
    12.M. Farge, “Wavelet Transforms and Their Applications to Turbulence,” Annu. Rev. Fluid Mech., vol.24, pp.395- 457, 1992.
    13.R. Carmona, W. L. Hwang, and B. Torresani, Practical Time-Frequency Analysis, Gabor and Wavelet Transforms with in Implementation in S, Academic Press, N. Y. , 1998.
    14.Time-Frequnecy Signal Analysis, Methods and Applic-tions, ed. by B. Boashash, Longman Cheshire, Australia, 1992.
    15.Y. N. Jeng, P. G. Huang, and H. Chen, “Wave Decomposition in Physical Space Using Iterative Moving Least Squares Methods,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, Paper No. CFD11-0107, Aug. 2004.
    16.Y. N. Jeng, Y. C. Cheng, and T. M. Yang, “Wave Decomposition Across Discontinuity Using Iterative Moving Least Squares Methods,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, Paper No. CFD11-0110, Aug. 2004.
    17.Y. N. Jeng and P. G. Huang, “Evaluation of Derivatives from Composite Wave via Iterative Filter and A Numerical Method of Solving Partial Differential Equations,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, Paper No. CFD11-0111, Aug. 2004.
    18.Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,” 10-th National Computational Fluid Dynamics Conference of Taiwan, Hua-Lien, 2003, Paper No.A-9, also Transactions of the Aeronautical and Astronautic Society of the Republic of China in press, Sept. 2004.
    19.楊宗明“應用離散移動式最小平方法誤差法於疊代式高/低通濾波器“ 國立成功大學航空太空工程學系碩士論文,July 2004。
    20.H.T.Huynh,“Accurate Monotone Cubic Interpola- tion,” SIAM J. Number. Anal., vol.30, no.1, pp57-100, Feb.1993.
    21.Jeng, Y. N. and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, vol.36, no.3, pp.207-214, 2004 .
    22.Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,” Trans. Aero. Astro. So., R. O. C., vol.36, no.3, pp.207-214, 2004.
    23.Y. N. Jeng and Y. C. Cheng, “A New Short Time Fourier Transform for a Time Series Data String”, to appear in Trans. Aero. Astro. Soc. R. O. C., 2006.
    24.Y. N. Jeng, C.T. Chen, and Y. C. Cheng, “A New and Effective Tool to Look into Details of a Turbulent Data String,” Proc. 12th National Computational Fluid Dyna-mics Conference, Kaohsiung Taiwan, Paper No. CFD12-2501, Aug. 2005.
    25.Y. N. Jeng and Y. C. Cheng, “The New Spectrogram Evaluated by Enhanced Continuous Wavelet and Short Time Fourier Transforms via Windowing Spectrums,” Proc. 18th IPPR conference on Computer Vision, Graphics and Image Processing (CVGIP2005), Taipei R. O. C, pp.378-383, Aug. 2005.
    26.N. Jeng, C. T. Chen, and Y. C. Cheng, “Studies of Some Detailed Phenomena of a Low Speed Turbulent Flow over a Bluff Body,” Proc. 2005 AASRC/CCAS Joint Conf., Kaohsiung, Taiwan, Paper No. H-47, Dec. 2005.
    27.N. Jeng, C. T. Chen, and Y. C. Cheng, “Some Detailed Information of a Low Speed Turbulent Flow over a Bluff Body Evaluated by New Time-Frequency Analysis,” AIAA Paper No.2006-3340, San Francisco June, 2006.
    28.Bendat, J. S, and Piersol, A. G., “Random Data Analysis and Measurement Procedures,” 3rd ed., John Wiley & Sons, New York, 2000.
    29.Hahn, S. L., “Hilbert Transforms in Signal Processing,” Artech House Inc. Boston, 1996.
    30.Y. N. Jeng, “Modified Hilbert Transform for Non-stationary Data of Finite Range,” The 7-th National Computational Fluid Dynamics Conference, P-15 to P-22, Aug. 2000.
    31.陳敬修“利用非侵入式Plethysmography信號評估手術病患舒張壓變化趨勢之研究“ 國立中山大學機械與機電工程系碩士論文,June 2004。
    32.蔡昇育“血管橈度與脈搏波速間關係之實驗模擬與研究“ 國立成功大學航空太空工程學系碩士論文,July 2007。
    33.http://www.raag.org.tw/menu1.php中華民國類風濕性關節炎之友協會
    34.http://www.nih.gov/about National Institutes of Health

    下載圖示 校內:立即公開
    校外:2007-08-23公開
    QR CODE