簡易檢索 / 詳目顯示

研究生: 王育源
Wang, Yu-Yuan
論文名稱: 製備擔載鈉離子的沸石觸媒應用在三酸甘油酯轉酯化成生質柴油之研究
The study of sodium-loaded zeolite catalysts for transesterification of triglycerides to biodiesel
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 124
中文關鍵詞: 生質柴油脂肪酸甲酯轉酯化反應三酸甘油酯異相觸媒沸石
外文關鍵詞: Biodiesel, Fatty acid methyl ester (FAME), Transesterification, Triglyceride, Heterogeneous catalyst, Zeolite
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的研究是利用轉酯化反應可將三酸甘油酯進一步轉化成生質柴油的特性,例如三油酸甘油酯在過量甲醇下的反應可透過沸石觸媒去完成。幾種不同組成的沸石觸媒,包含沸石HY、MCM-22 與Beta,可被我們合成出來並且利用鹼離子交換過程去進行修飾,這種經過修飾過的觸媒可提供轉酯化反應在65C度以下仍保有良好的催化性質。

    沸石MCM-22與HY (CBV-780)這兩種觸媒如果沒有事先適度地進行表面修飾處理過的話,都不能有效地將三油酸甘油酯催化成為脂肪酸甲酯(生質柴油)。例如,使用沸石MCM-22去進行轉酯化反應了90小時後,三油酸甘油酯轉化成生質柴油的產率只有16.3%;而使用沸石HY去進行轉酯化反應了90小時後,三油酸甘油酯轉化成生質柴油的產率大約有90%。相比之下,將上述的沸石觸媒透過鈉離子交換法進行表面修飾後卻可以大大的提高其轉化率,例如,經過氫氧化鈉水溶液處理過的沸石MCM-22與HY,在5.5小時之內可分別使三油酸甘油酯轉化成生質柴油的產率為98%與99%,雖然經過氫氧化鈉水溶液處理過的沸石觸媒本身結構有些會變成非晶相物以及其BET表面積的喪失,但是並沒有觀察到有皂化現象的出現。在觸媒進行鈉離子交換的過程中,其參數包含溫度、反應時間、pH值、以及鈉離子來源(氫氧化鈉、氯化鈉與硫酸鈉)的濃度都被拿來探討其對於三油酸甘油酯轉化成生質柴油的轉化率有什麼影響。最後的結果可發現在65C度的三酸甘油酯轉化成生質柴油的轉化率可以高達97.3%。

    帶有高矽鋁比特性的沸石Beta可透過氟離子利用水熱法去合成出來,並且可以在三油酸甘油酯轉化成生質柴油的轉酯化反應中被拿來當作異相催化劑,合成後具有高矽鋁比特性的沸石Beta可接著進行氫氧化鈉水溶液的適當處理,此步驟的目的是為了得到具有較佳催化能力的觸媒以利於轉酯化反應的進行。因此,透過此修飾過的沸石Beta可在迴流反應的情況下在一小時內可得到超過90%的轉化率;而且,此經過鈉離子修飾過的沸石觸媒在轉酯化反應過程中依然展現不錯的循環耐久性,因為此觸媒在經過重複八次的轉酯化反應之後,其三油酸甘油酯轉化成生質柴油的轉化率仍然保有不錯的催化能力。

    在轉酯化反應的過程之中,這些經過表面修飾過的沸石觸媒所展現的催化作用,透過固態核磁共振光譜分析、孔洞分析法與其他的儀器分析的結果可推測出其主要的反應機制是利用沸石觸媒表面上的鹼性活性點去促進轉酯化反應的進行,在轉酯化反應進行期間,鈉陽離子會儲存在經過氫氧化鈉水溶液修飾過的沸石Beta觸媒之中的大孔洞與表面缺陷點(defect sites)之中,並且適當的補給到觸媒的表面去增強觸媒在轉酯化反應中的催化能力。

    A study of biodiesel production via transesterification of triglycerides, such as triolein, in excess methanol in presence of zeolite catalysts was carried out. Various zeolite frameworks, including HY, MCM-22 and Beta, were synthesized and modified, mainly with alkali ion exchange processes, to render satisfactory catalysis in transesterification at a temperature lower than 65°C.

    Zeolite MCM-22 and zeolite HY (CBV-780) could not effectively catalyze the transesterification of triolein without prior proper surface modifications. For example, a conversion efficiency of triolein to biodiesel near 16.3% and ca. 90% was obtained with the use of zeolite MCM-22 after a 90-h reaction and with zeolite HY after a 40-h reaction. In contrast, the conversion yields were much improved with Na+ ion-exchange to the surface of the aforementioned zeolite catalysts. For example, the yields of triolein to biodiesel reached 98% and 99% within a 5.5-hour reaction, respectively, using the NaOH-treated HY and MCM-22 catalysts, even though these NaOH-treated catalysts became amorphous and suffered a loss of the Brunauer-Emmett-Teller (BET) surface area. No saponification was observed using these NaOH-treated catalysts. The process parameters of the ion-exchange process to activate Zeolite HY catalysts, including the temperature, the process time, the pH value, as well as the concentrations and sources of the Na+ cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated accordingly. As a result, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C.

    Zeolite Beta with a high Si/Al ratio as a heterogeneous catalyst in the transesterification of triolein for biodiesel production was synthesized hydrothermally in fluoride media. The prepared Zeolite Beta was subsequently treated with dilute NaOH solutions to obtain better catalysis in the transesterification reaction. A conversion efficiency of over 90% could be attained within an hour of the reflux reaction. Moreover, these Na-treated zeolite catalysts still exhibit acceptable durability and good catalysis in the transesterification reaction after nine consecutive cycles.
    The main mechanism on the catalysis of these surface-modified zeolites is inferred from the alkali active sites on the surface of zeolites based on the surface characterization of the catalysts mainly through the use ofwith solid-state NMR, Porosimetry, and other instruments. During the transesterification reaction, sodium cations existing in the cages and the defect sites of the NaOH-treated Zeolite Beta can be supplied to the surface of the catalysts and, thus, enhance the catalysis.

    中文摘要 I ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VII LIST OF TABLES XI LIST OF FIGURES XIII 1. INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Contributions and Objectives 2 1.3 Outlines 3 2. LITERATURE REVIEW 5 2.1 Introduction 5 2.2 Overview of Biodiesel 7 2.2.1 What is biodiesel 7 2.2.2 The origin of biodiesel 8 2.2.3 Advantages and disadvantages of biodiesel 9 2.2.4 The development of biodiesel 11 2.3 Transesterification reaction 16 2.3.1 Introduction 16 2.3.2 Homogeneous catalysts 19 2.3.3 Heterogeneous catalysts 22 2.3.4 Lipase catalysts 24 2.4 Zeolite catalyst 25 2.4.1 Introduction to zeolite 25 2.4.2 Zeolite Y 28 2.4.3 Zeolite MCM-22 31 2.4.4 Zeolite Beta 32 3. EXPERIMENTAL METHODS 35 3.1 Materials and Main Instruments 35 3.1.1 Materials 35 3.1.2 Main Instruments 36 3.2 Characterization Methods 37 3.2.1 Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) 37 3.2.2 Micromeritics ASAP 2020 porosimeter 38 3.2.3 X-ray diffractometer (XRD) 39 3.2.4 Inductively coupled plasma optical emission spectrometer (ICP-OES) and Atomic Absorption Spectroscopy (AA) 40 3.2.5 Liquid-state Nuclear Magnetic Resonance spectrometer (1H- NMR) 41 3.2.6 Solid-state Nuclear Magnetic Resonance spectrometer (ss NMR) 41 3.2.7 Model Start S, Milestone Srl, (Italy) 43 3.3 Preparation of sodium-loaded Catalysts 44 3.3.1 Synthesis of MCM-22 44 3.3.2 Synthesis of high silica Beta 45 3.3.3 Modification of catalysts 46 3.3.3.1 Surface Modification of CBV-780, MCM-22 and Si-Al catalysts with NaOH 46 3.3.3.2 Surface Modification of CBV-780 for different Na+ sources 46 3.3.3.3 Surface Modification of Zeolite Beta 47 3.3.4 Recycling catalyst 48 3.4 Experiment method 48 3.4.1 Preparation of catalysts 48 3.4.2 Transesterification reaction at 60°C 48 3.4.3 Transesterification reaction by reflux 51 3.4.4 Transesterification reaction by microwave 52 3.5 Analytical Methods 53 3.5.1 Introduction 53 3.5.2 Analysis of biodiesel 54 3.5.3 Catalysts analysis 55 4. RESULTS AND DISCUSSION 57 4.1 Performance of Zeolite MCM-22 and commercial CBV-780. 58 4.1.1 Characterization of As-Synthesized Zeolite MCM-22 and Other Catalysts 58 4.1.2 Transesterification of triolein in methanol 62 4.1.3 Physical property of catalysts after and before transesterification 65 4.1.4 Catalystic effect of Na+ cation on the surface of catalyst for transesterification 66 4.2 Optimization of sodium loading on zeolite support for transesterification 69 4.2.1 Introduction 69 4.2.2 Effects of the sodium source and the Na+ concentration in the ionexchange process 69 4.2.3 Effects of the duration of the sodium ion-exchange process 75 4.2.4 Cyclic durability of the catalyst 77 4.3 Performance of As-Synthesized Zeolite Beta 79 4.3.1 Introduction 79 4.3.2 Characterization of Zeolite Beta 79 4.3.3 Catalyzed transesterification reaction by reflux and microwave heating process 85 4.3.4 Surface chemistry of the Na (0.5, 27) before and after transesterification reaction 92 4.3.5 Discussion of Na-BEA structure 97 5. CONCLUSIONS AND RECOMMENDATIONS 101 5.1 Conclusions 101 5.2 Recommendations 103 REFERENCE 105 CURRICULUM VITAE 123

    Abdullah A Z., Razali N., Mootabadi H., Salamatinia B. Critical Technical Areas for Future Improvement in Biodiesel Technologies. Environmental Research Letters, 2, 1-6 (2007)

    Ahmad, A., Barat, G., Mohammad, R. O., Gholamhassan N. Current Biodiesel Production Technologies: A Comparative Review. Energy Conversion and Management, 63, 138-148 (2012).

    Alaba, P.A.M., Sani, Y.M., Mohammed, I.Y., Abakr, Y.A., Daud, W.M.A.W. Synthesis and Characterization of Sulfated Hierarchical Nanoporous Faujasite Zeolite for Efficient Transesterification of Shea Butter. Journal of Cleaner Production, 142, 1987-1993 (2017).

    Anilkumar, R. G., Virendra, K. R. Calcium Diglyceroxide Catalyzed Biodiesel Production from Waste Cooking Oil in The Presence of Microwave: Optimization and kinetic studies. Renewable Energy, 121, 757-767 (2018).

    ASTM D6584-17: Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. DOI: 10.1520/D6584-17 (2017).

    Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H. & Mekhilef, S. AComprehensive Review on Biodiesel as Alternative Energy Source and Its Characteristics. Renewable and Sustainable Energy Reviews, 16, 2070-2093 (2012).
    Atadashi, I.M., Aroua, M.K., Aziz, A.A. Biodiesel Separation and Purification: A Review. Renewable Energy, 36, 437-443 (2011).

    Aued-Pimentel, S., Kus, M.M.M., Kumagai, E.E., Ruvieri, V., Zenebon. O. Comparison of Gas Chromatographic and Gravimetric Methods for Quantization of Total Fat and Fatty Acids in Foodstuffs. Química Nova, 33, 76-84 (2010).

    Barnwal, B.K., Sharma, M.P. Prospects of Biodiesel Production from Vegetables Oils in India. Renew. Sustain. Energy Review, 9, 363-378 (2005).

    Bluhm, K., Heger, S., Seiler, T.-S., Hallare, A.V., Schäffer, A., Hollert, H. Toxicological and Ecotoxicological Potencies of Biofuels Used for The Transport Sector - A Literature Review. Energy & Environmental Science, 5, 7381-7392 (2012).

    Bowman, M., Hilligoss, D., Rasmussen. S. Biodiesel: A Renewable and Biodegradable Fuel, Hydrocarbon Processing. Hydrocarbon Processing (PerkinElmer) , 103-106 (2006).

    Brahmkhatri, V. Patel, A. Biodiesel Production by Esterification of Free Fattyacids over 12-tungstophosphoric Acid Anchored to MCM-41, Industrial & Engineering Chemistry Research, 50, 6620-6628 (2011).

    Breck, D.W. Zeolite Molecular Sieves, John Wiley & Sons, New York, NY, USA (1974).

    Brito, A.; Borges, M. E.; Otero, N. Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil. Energy Fuels, 21, 3280-3283 (2007).
    Camblor, M.A., Corma, A., Valencia, S. Spontaneous Nucleation and Growth of Pure Silica Zeolite-free of Connectivity Defects. Chemical Communications, 2365-2366 (1996).

    Camblor, M.A., Corma, A., Valencia, S. Characterization of Nanocrystalline Zeolite Beta. Microporous and Mesoporous Materials, 25, 59-74 (1998).

    Camblor, M.A., Corma, A., Valencia, S. Synthesis in Fluoride Media and Characterisation of Aluminosilicate Zeolite Beta, Journal of Materials Chemistry, 8, 2137-2145 (1998).

    Camblor, M.A., Villaescusa, L.A., Diaz-Cabanas, M.J. Synthesis of All-silica and High-silica Molecular Sieves in Fluoride Media, Topics in Catalysis, 9, 59-76 (1999).

    Carrero, A.; Vicente, G.; Rodríguez, R.; Linares, M.; del Peso, G. L. Hierarchical Zeolites as Catalysts for Biodiesel Production from Nannochloropsis Microalga Oil. Catalysis Today, 167, 158-153 (2011).

    Carvalho, MS; Mendonca, MA; Pinho, DMM; Resck, IS; Suarez, PAZ. Chromatographic Analyses of Fatty Acid Methyl Esters by HPLC-UV and GC-FID. Journal of the Brazilian Chemical Society, 23, 763-769 (2012).

    Cirujano, F.G., Corma, A., Xamena, F.X.L.I. Zirconium-containing Metal Organic Frameworks as Solid Acid Catalysts for The Esterification of Free Fatty Acids: Synthesis of Biodiesel and Other Compounds of Interest. Catalysis Today, 257, 213-220 (2015).

    Chou, H.Y. Transesterification of Triglycerides for Biodiesel Production Using Na+ Loaded Zeolite Y Catalysts. In: Department of Chenical Engineering, Vol. Master thesis, National Cheng Kung University. Tainan, Taiwan, pp. 68-92 (2012).

    Chuang, T.L. Study on Catalyzed Transesterification of Triglycerides with Ion-Exchanged Zeolite Beta. In: Department of Chenical Engineering, Vol. Master thesis, National Cheng Kung University. Tainan, Taiwan, pp. 74-77 (2014).

    Chris Woodford. http://www.explainthatstuff.com/zeolites.html (2018).

    Đặng, T.H., Chen, B.H., Lee, D.J. Optimization of Biodiesel Production from Transesterification of Triolein Using Zeolite LTA Catalysts Synthesized From Kaolin Clay. Journal of the Taiwan Institute of Chemical Engineers, 79, 14-22 (2017).

    Do, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, U.K. (1998).

    Delitala C., Alba, M.D., Becerro, A.I., Delpiano, D., Meloni, D., Musu, E., Ferino, I. Synthesis of MCM-22 Zeolites of Different Si/Al Ratio and Their Structural, Morphological and Textural Characterization. Microporous and Mesoporous Materials, 118, 1-10 (2009).

    Dieffenbacher, A., Pocklington, W.D. IUPAC: Standard Methods for The Analysis of Oils, Fats and Derivatives (1st Supplement to the 7th Edition). Oxford Blackwell Scientific Publication, England (1992).
    Ejikeme, P.M., Anyaogu, I.D., Ejikeme, C.L., Nwafor, N.P., Edbuonu, C.A.C., Ukogu, K. & Ibemesi, J.A. Catalysis in Biodiesel Production by Transesterification Process: An Insight. E-journal of Chemistry, 7 (4), 1120-1132 (2010).

    Estelvina R. P., Araceli A. C., Arturo C. C., Rubí R. R. Qualitative Characteristics of Biodiesel Obtained from Sunflower Oil. Biofuels - Status and Perspective, Chapter 13 (2015).

    Feng, H.C. Transesterification of Triglycerides for Biodiesel Production using pre-treated Zeolite Beta Catalysts. In: Department of Chenical Engineering, Vol. Master thesis, National Cheng Kung University. Tainan, Taiwan, pp. 93-95 (2013).

    Flanigen E.M. Chapter 2 Zeolites and Molecular Sieves: An Historical Perspective. Studies in Surface Science and Catalysis, 137, 11-35 (2001).

    Gebremariam, S.N., Marchetti, J.M. Biodiesel Production Technologies: Review. AIMS Energy (11 May 2017).

    Gelbard, G., Bres, O., Vargas, R.M., Vielfaure, F., Schuchardt, U.F. 1H Nuclear Magnetic Resonance Determination of The Yield of The Transesterification of Rapeseed Oil with Methanol. Journal of the American Oil Chemists' Society, 72, 1239-1241 (1995).

    Gerhard Knothe JVG, Jürgen Krahl. The Biodiesel Handbook; Gerhard Knothe JVG, Jürgen Krahl, editor: AOCS Press, Champaign, Illinois (2005).

    Holcapek, M., Jandera, P., Fischer, J., Prokes,. B. Analytical Monitoring of The Production of Biodiesel by High Performance Liquid Chromatography with Various Detection Methods. Journal of Chromatography A, 858, 13-31(1999).

    Hunger, B., Matysik, S., Heuchel, M., Geidel, E., Toufar, H. Adsorption of Water on Zeolites of Different Types. Journal of Thermal Analysis and Calorimetry, 49, 553-565 (1997).

    Ibeto, C.N., Okoye, C.O.B., Anyanwu, C.N. Fossil Fuels and Heavy Metal Pollution of The Nigerian Environment. Journal of Science and Industrial Policy, 2(1), 9-20 (2009).

    International Energy Agency (IEA). USA Monthly Biodiesel Production Report from 2016-2018. https://www.eia.gov/biofuels/biodiesel/production/biodiesel.pdf (2018).

    International Energy Agency (IEA). World Energy Outlook 2007. Available from: http://www.iea.org/Textbase/npsum/WEO2007SUM.pdf (2007).

    International Zeolite Association (IZA). Database of Zeolite Structures. http://www.iza-structure.org/databases/(2018)

    Kamath, H.V., Regupathi, I., Saidutta, M.B. Optimization of Two Step Karanja Biodiesel Synthesis Under Microwave Irradiation. Fuel Processing Technology, 92, 100-105 (2011).

    Yamaguchi, K. Study on Asian Potential of Biofuel Market. Economic Research Institute for ASEAN and East Asia. Economic Research Institute for ASEAN and East Asia (2014).

    Kim, D. S., Hanifzadeh, M., Kumar, A. Trend of Biodiesel Feedstock and Its Impact on Biodiesel Emission Characteristics. Environmental Progress & Sustainable Energy , 37(1), 7-19 (2017).

    Klinowski, J. Recent Advances in Solid-state NMR of Zeolites, Solid State Ionics, 18, 189-218 (1988).

    Knothe, G.. Analytical Methods Used in The Production and Fuel Quality Assessment of Biodiesel. Trans. ASAE, 44: 193-200 (2001).

    Knothe, G. Dependence of Biodiesel Fuel Properties on The Structure of Fatty Acid Alkyl Esters. Fuel Process. Tech., 86: 1059-1070 (2005).

    Knothe, G., Dunn, R. O., Bagby, M.O. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. Fuels and Chemicals from Biomass. American Chemical Society Symposium, Ser. 666. Washington, D.C (1997).

    Knothe, G.. Historical Perspectives on Vegetable Oil-based Diesel Fuels. Inform, 12, 1103-1107 (2001).

    Knothe, G. NMR Spectroscopy of Fatty Acids and Their Derivatives. The AOCS Lipid Library (2005), http://lipidlibrary.aocs. org/nmr/nmr.html.

    Knothe, G. Monitoring a Progressing Transesterification Reaction by Fiber-opticnear Infrared Spectroscopy with Correlation to 1H Nuclear Magnetic Resonancespectroscopy. Journal of the American Oil Chemists' Society, 77, 489-493

    Koller, H., Lobo, R.F. Burkett, S.L. Davis, M.E. SiO−•••HOSi Hydrogen Bonds in As-synthesized High-silica Zeolites. The Journal of Physical Chemistry, 99, 12588-12596 (1995).

    Lechner, M., Bauer‐Plank, C., Lorbeer, E. Determination of Acylglycerols in Vegetable Oil Methyl Esters by On-line Normal Phase LC‐GC. Journal of High Resolution Chromatography, 20(11), 581-585 (1997).

    Lee, S.K., Stebbins, J.F. The Distribution of Sodium Ions in Aluminosilicate Glasses: A High-field Na-23 MAS and 3Q MAS NMR Study. Geochimica et Cosmochimica Acta, 67(9), 1699-1709 (2003).

    Lee, K., Yu, J.X., Mei, J.H., Yan, L., Kim, Y., Chung, K. A Kinetic Study on The Transesterification of Glyceryl Monooleate and Soybean Used Frying Oil to Biodiesel. Journal of Industrial and Engineering Chemistry, 13, 799-807 ( 2007).

    Leung, D.Y.C., Guo Y. Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Processing Technology, 87, 883-890 (2006).
    Lourinho, G., Brito, P. Advanced Biodiesel Production Technologies: Novel Developments, Rev. Environ. Sci. Biotechnol. 14, 287-316 (2015).

    Onkar S. T., Neeraj A., Basany K., Arunabha D. Production, Characterization and Development of Standards for Biodiesel-A Review. MAPAN-Journal of Metrology Society of India, 25(3), 197-218 (2010).

    Leonowicz, M.E., Lawton, J.A., Lawton, S.L., Rubin, M.K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913 (1994).

    Lourinho, G., Brito, P. Advanced Biodiesel Production Technologies: Novel Developments. Reviews in Environmental Science and Bio/Technology, 14, 287–316 (2015).

    Lutz, W. Zeolite Y: Synthesis, Modification, and Properties - A Case Revisited. Hindawi Publishing Corporation, Advances in Materials Science and Engineering, 1-20 (2014).

    Lutz, W., Toufar, H., Kurzhals, R., Suckow, M. Investigation and Modeling of The Hydrothermal Stability of Technically Relevant Zeolites. Adsorption, 11(3-4), 405-413 (2005).

    Lutz, W., Loffler, E., Zibrowius, B. Hydrothermal and Alkaline Stability of High-silica Y Zeolites Generated by Combining Substitution and Steaming. Studies in Surface Science and Catalysis, 97, 327-334 (1995).
    Macario, A.; Giordano, G.; Onida, B.; Cocina, D.; Tagarellic, A.; Giuffrè, A. M. Biodiesel Production Process by Homogeneous/heterogeneous Catalytic System Using An Acid−base Catalyst. Applied Catalysis, A , 378, 160-168 (2010).

    Maeda, Y.; Thanh, L.T.; Imamura, K.; Izutani, K.; Okitsu, K.; Boi, L.V.; Lan, P.N.; Tuan, N.C.;Yoo, Y.E.; Takenaka, N. New Technology for The Production of Biodiesel Fuel. Green Chemistry, 13, 1124-1128 (2010).

    Ma, F., Hanna, M.A. Biodiesel Production: A Review. Bioresource Technology, 70, 1-
    15 (1999).

    Malgras, V. , Ji, Q., Kamachi, Y. , Mori, T., Shieh, F. K., Wu, K.C.W., Ariga, K., Yamauchi, Y. Templated Synthesis for Nanoarchitectured Porous Materials, Bull. The Chemical Society of Japan, 88, 1171-1200 (2015).

    Mark E. Davis. Zeolites and Molecular Sieves: Not Just Ordinary Catalysts. Industrial & Engineering Chemistry Research,30, 1675-1683 (1991).

    May Y. K., Tinia I. M., Ghazi. A Review of Biodiesel Production from Jatropha Curcas L. oil. Renewable and Sustainable Energy Reviews, 15, 2240-2251(2011).

    Mazubert, A., Poux, M., Aubin, J. Intensified Processes for FAME Production from Waste Cooking Oil: A Technological Review. Chemical Engineering Journal, 233, 201-223 (2013).

    Meher, L.C., Sagar, D.V., Naik, S.N. Technical Aspects of Biodiesel Production by Transesterification: A Review. Renewable and Sustainable Energy Reviews, 10, 248-268 (2006).

    Mittlebach, M. Analytical Aspects and Quality Criteria for Biodiesel Derived from Vegetable Oils. Proceedings of Liquid Fuels, Lubricants and Additives from Biomass. American Society for Agricultural Engineers, 151-156 (June 1994).

    Moshoeshoe1 M., Nadiye-Tabbiruka M. S., Obuseng V. A Review of The Chemistry, Structure, Properties and Applications of Zeolites. American Journal of Materials Science, 7(5), 196-221 (2017).

    Nayebzadeha, H., Haghighib M., Saghatoleslamia, N., Tabasizadehd, M., Binaeian, E. Influence of Carbon Source Content on The Structure and Performance of KOH/Ca12Al14O33-C Nanocatalyst Used in The Transesterificationreaction Via Microwave Irradiation. Journal of Alloys and Compounds, 743, 672-681 (2018).

    Pacific Biodiesel 2018, from http://www.biodiesel.com/biodiesel/history/, Retrieved 3/18/2018.

    Pahl, G. Biodiesel: Growing a New Energy Economy. White River Junction, VT: Chelsea Green Publishing Company, 83(156), 40-41 (2005).

    Panwara, N.L., Kaushikb, S.C., Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renewable and Sustainable Energy Reviews, 15, 1513-1524 (2011).

    Pauls, R.E. A Review of Chromatographic Characterization Techniques for Biodiesel and Biodiesel Blends. Journal of Chromatographic Science, 49, 384-96 (2011).

    Perez-Pariente, J., Martens, J.A., Jacobs, P.A. Factors Affecting the Synthesis Efficiency of Zeolite BETA from Aluminosilicate Gels Containing Alkali and Tetraethylammonium Ions, Zeolites, 8, 46-53 (1988).

    Prakash, T., Edwin Geo V., Leenus Jesu Martin, Nagalingam, B. Effect of Ternary Blends of Bio-ethanol, Diesel and Castor Oil on Performance, Emission and Combustion in a CI Engine. Renewable Energy, 122, 301-309 (2018).

    Ramos, M. J.; Casas, A.; Rodríguez, L.; Romero, R.; Pérez, A. Transesterification of Sunflower Oil over Zeolites Using Different Metal Loading: A Case of Leaching and Agglomeration Studies. Applied Catalysis, A, 346, 79-85 (2008).

    Reddy, S.R., Titu, D., Chadha, A. A Novel Method for Monitoring the Transesterification Reaction of Oil in Biodiesel Production by Estimation of Glycerol. Jounal of the Americam Oil Chemists’ Society, 87, 747-754 (2010).

    Rinkesh Kukreja. (2009)
    https://www.conserve-energy-future.com/advantages_disadvantages_biodiesel.php.
    Romano, S.D., Sorichetti, P.A. Dielectric Spectroscopy in Biodiesel Production and Characterization, Springer-Verlag London Limited, Chapter 2, 7-27 (2011).

    Roth, W.J., Cejka, J., Millini, R., Montanari, E., Gil, B., Kubu, M. Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 27, 4620-4629 (2015).

    Rubin, M.K., Chu, P. Compositions of Synthetic Porous Crystalline Materials, Its Synthesis and Use. U.S. Patent 4,954,325 (1990).

    Sajjadi, B., Aziz, A.R.A., Ibrahim, S. Investigation, Modelling and Reviewing the Effective Parameters in Microwave-assisted Transesterification. Renewable & Sustainable Energy Reviews, 37, 762-777 (2014).

    Sani, J., Samir, S., Rikoto, I.I., Tambuwal, A.D., Sanda. A., Maishanu, S.M., Ladan, M.M. Production and Characterization of Heterogeneous Catalyst (CaO) from Snail Shell for Biodiesel Production Using Waste Cooking Oil. Innovative Energy & Research, 6(2), 1-4 (2017).

    Santos Marques, A. L.; Fontes Monteirob, J. L.; Pastorea, H. O. Static Crystallization of Zeolites MCM-22 and MCM-49. Microporous Mesoporous Mater, 32, 131-155 (1999).

    Schuchardta, U., Serchelia, R., Vargas R. M. Transesterification of Vegetable Oils: a Review. Journal of the Brazilian Chemical Society, 9 (1), 199-210 (1998).

    Semwal, S., Arora, A.K., Badoni, R.P., Tuli, D.K. Biodiesel Production Using Heterogeneous Catalysts. Bioresource Technology, 102, 2151-2161 (2011).

    Shafaque Firoz1, A review: Advantages and Disadvantages of Biodiesel. International Research Journal of Engineering and Technology, 4, 11, 530-530 (2017).

    Shahir, V.K., Jawahar, C.P., Suresh, P.R. Comparative Study of Diesel and Biodiesel on CI Engine with Emphasis to Emissions-a Review. Renewable and Sustainable Energy Reviews, 45, 686-697 (2015)

    Sharma, R.V., Baroi, C., Dalai, A.K. Production of Biodiesel from Unrefined Canola Oil Using Mesoporous Sulfated Ti-SBA-15 Catalyst. Catalysis Today, 237, 3-12 (2014).

    Sharma, Y. C.; Singh, B.; Korstad, J. Advancements in Solid Acid Catalysts for Ecofriendly and Economically Viable Synthesis of Biodiesel. Biofuels Bioprod. Biorefin, 5, 69-92 (2011).

    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., Siemieniewska, T. Reporting Physisorpton Data for Gas/solid Systems with Special Reference to The Determination of Surface Area and Porosity, Pure and Applied Chemistry, 57, 603-619 (1985).

    Soetaredjo, F.E., Ayucitra, A., Ismadji, S., Maukar, A.L. KOH/bentonite Catalysts for Transesterification of Palm Oil to Biodiesel. Applied Clay Science, 53, 341-346 (2011).

    Stelzer, J., Paulus, M., Hunger, M., Weitkamp, J. Hydrophobic Properties of All-silica Zeolite Beta. Microporous and Mesoporous Materials, 22, 1-8 (1998).

    Subhash Bhatia, Zeolite Catalysis: Principles and Applications, CRC Press, Inc., Boca Raton, Florida, 7-13 (1990).

    Tariq M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., Khan, M.A. Identification, FT-IR, NMR (1H and 13C) and GC/MS Studies of Fatty Acid Methyl Esters in Biodiesel from Rocket Seed Oil. Fuel Processing Technology, 92, 336-341 (2011).

    Tong M., Zhang, D., Fan, W., Xu, J., Zhu, L., Guo, W., Yan, W., Yu, J., Qiu, S., Wang, J., Deng, F., Xu, R. Synthesis of Chiral Polymorph A-enriched Zeolite Beta with An Extremely Concentrated Fluoride Route. Scientific Reports, 5, 11521-11530 (2015).

    Torad, N.L., Naito, M., Tatami, J., Endo, A., Leo, S.Y., Ishihara, S., Wu, K.C.W., Wakihara, T., Yamauchi, Y. Highly Crystallized Nanometer-Sized Zeolite A with Large Cs Adsorption Capability for The Decontamination of Water, Chemistry-An Asian Journal, 9, 759-763 (2014).

    Treacy, M.M.J., Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 4th revised ed.; Elsevier Science: Amsterdam, New York (2001).

    Tyagi, O.S., Atray, N., Kumar, B., Datta, A. Production, Characterization and Development of Standards for Biodiesel - A Review. Journal of Metrology Society of India, 25(3), 197-218 (2010).
    Viboonratanasri D., Pabchanda S., Prompinit, P. Rapid and Simple Preparation of Rhodamine 6G Loaded HY Zeolite for Highly Selective Nitrite Detection. Applied Surface Science, 440, 1261-1268 (2018).

    Yang, R. T. Adsorbents: Fundamentals and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey (2003).

    Wadlinger, R.L., Kerr, G.T., Rosinski E.J Catalytic Composition of A Crystalline Zeolite. US Patent 3,308,069 (1967).

    Wang, H.H. Synthesis of Zeolite MCM-22 for Catalyzed Transesterification of Triglycerides for Biodiesel. In: Department of Chenical Engineering, Vol. Master thesis, National Cheng Kung University. Tainan, Taiwan, pp. 8388 (2014).

    Wang, Y.Y., Ð˘ang, T.H., Chen, B.H., Lee, D.J. Transesterification of Triolein to Biodiesel Using Sodium-loaded Catalysts Prepared from Zeolites. Industrial & Engi-neering Chemistry Research, 51, 9959-9965 (2012).

    Weitkamp, J. Zeolites and Catalysis, Solid State Ionics, 131, 175-188 (2000).

    Bundhoo, Z.M.A. Microwave-assisted Conversion of Biomass and Waste Materials to Biofuels. Renewable and Sustainable Energy Reviews, 82(1), 1149-1177 (2018).

    Zhang, Z., Wang, Q., Chen H., Zhang. X. Hydroconversion of Waste Cooking Oil into Bio-Jet Fuel over A Hierarchical NiMo/USY@Al-SBA-15 Zeolite. Chemical Engineering & Technology, 41(3), 590–597 (2018).

    下載圖示 校內:立即公開
    校外:2023-06-01公開
    QR CODE