簡易檢索 / 詳目顯示

研究生: 蔡宗亞
Tsai, Tsung-Ya
論文名稱: 應用基因重組酵母菌結合液相層析串聯質譜儀檢測臺灣河川中類(抗)雌激素及類(抗)雄激素之分布
Evaluation of (anti-)estrogenic and (anti-)androgenic activities in Taiwanese rivers using yeast bioassays and liquid chromatography-tandem mass spectrometry
指導教授: 周佩欣
Chou, Pei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 類(抗)雌激素類(抗)雄激素生物試驗法液相層析質譜法
外文關鍵詞: (Anti-)estrogenic compound, (Anti-)androgenic compounds, bioassays, LC-MS/MS analysis
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用基因重組酵母菌生物試驗法搭配液相層析串聯式質譜儀,檢測臺灣五條河川水相及懸浮固體相之類(抗)雌激素活性及類(抗)雄激素活性於2012~2013年間之分布情形。採樣地點由北到南分別為淡水河、鹽水溪、二仁溪、阿公店溪及高屏溪。
    生物試驗法結果顯示在二仁溪流域 (鯽潭橋、永寧橋和通地溝)及阿公店溪流域 (阿公店溪橋)之水相樣本具高類雌激素活性 (ND~71.2 E2-EQ ng/L);懸浮固體樣本僅於鹽水溪流域 (千鳥橋)測得類雌激素活性 (13.8 E2-EQ ng/L),其餘皆無明顯之類雌激素活性。各流域採樣點當中,無論水相或懸浮固體相大都具有抗雌激素活性 (ND~1222.6及ND~789.6 OHT-EQ μg/L),顯示抗雌激素常存於河川水體當中。所有河川水相及懸浮固體相樣本皆無測得類雄激素活性。而在各流域採樣點之水相及懸浮固體大都具有抗雄激素活性 (ND~3377.5及ND~7869.3 FLU-EQ μg/L),顯示抗雄激素亦常存於河川水體當中。
    液相層析串聯式質譜儀分析結果顯示,5條河川之水相及懸浮固體相皆存在高濃度之雙酚A (ND~224.8 μg/L及ND~83.3 μg/L)及壬基酚 (76.0 ng/L~33.0 μg/L及ND~4265.0 ng/L),並以二仁溪流域具有較高濃度的雙酚A和壬基酚。河川水相樣本中天然雌激素雌酮、雌二醇及雌三醇在淡水河流域 (ND~119.4 ng/L、ND及ND~64.8 ng/L)、鹽水溪流域 (ND~127.1 ng/L、ND~28.9 ng/L及ND~22.5 ng/L)、二仁溪流域 (14.3~225.6 ng/L、ND~26.4 ng/L及ND~408.3 ng/L)、阿公店溪流域 (17.7~154.6 ng/L、ND~33.6 ng/L及ND~142.1 ng/L)與高屏溪流域 (ND~304.1 ng/L、ND~108.3 ng/L及ND~78.5 ng/L)中皆有發現。河川之懸浮固體相中天然雌激素雌酮及雌三醇濃度較低 (ND~16.6 ng/L及ND~71.6 ng/L ),雌二醇 (ND~36.4 ng/L)出現的樣本數也較少,顯示天然雌激素不易存在於懸浮固體相中。由生物試驗法及儀器分析結果看來,生物試驗法測得之類雌/雄激素可能會受到水體中其他物質的拮抗作用使得活性下降,此外,目前所知的抗雌/雄激素物質對生物試驗活性的貢獻度很低 (<10%),推測是環境樣品較為複雜,不同物質間可能會有拮抗的效應,或者是存在未知之抗雌/雄激素物質,還需進一步研究。

    In this study, we used recombined yeast bioassays in combination with LC-MS/MS to detect the (anti)estrogenic and (anti)androgenic activities of water and suspended solid (SS) samples in five Taiwanese rivers. Sampling sites from Northem to Southem Taiwan were Danshuei (DS), Yanshuei (YS), Erren (ER), Agondian (AGD), and Gaoping (GP) rivers.
    Bioassay results showed that high estrogenic activity (ND~71.2 E2-EQ ng/L) was detected in ER and AGD river water samples, and only one SS sample from YS river elicited estrogenic activity (13.8 E2-EQ ng/L). Most water and SS samples showed anti-estrogenic (ND~1222.6 and ND~789.6 OHT-EQ μg/L) and anti-androgenic (ND~3377.5 and ND~7869.3 FLU-EQ μg/L) activities. However, there was no androgenic activity in all of the samples.
    LC-MS/MS analysis suggested that water and SS samples showed high concentrations of bisphenol A (ND~224.8 μg/L and ND~83.3 μg/L) and nonylphenol (76.0 ng/L~33.0 μg/L and ND~4265.0 ng/L). ER river had higher BPA an NP concentration than others. Estrone, estradiol, estriol were found in DS river (ND~119.4 ng/L, ND and ND~64.8 ng/L), YS river ((ND~127.1 ng/L, ND~28.9 ng/L and ND~22.5 ng/L), ER river (14.3~225.6 ng/L, ND~26.4 ng/L and ND~408.3 ng/L), AGD river (17.7~154.6 ng/L, ND~33.6 ng/L and ND~142.1 ng/L), and GP river (ND~304.1 ng/L, ND~108.3 ng/L and ND~78.5 ng/L) water samples. Lower concentrations of estrone (ND~16.6 ng/L) and estriol (ND~71.6 ng/L) were found in SS samples, and estradiol was found only in few samples (ND~36.4 ng/L), showing that natural estrogens seldom existed in the particulate phase. According to the bioassay results and the LC-MS/MS results, the known estrogenic/anti-androgenic compounds showed low contribution to the estrogenic/anti-androgenic activities detected by bioassays (<10%), which might be caused by the antagonists or unknown compounds in the complex water samples.

    摘要 I Abstract III 誌謝 V 表目錄 IX 圖目錄 X 第一章 前言 1 1-1 研究動機與目的 1 第二章 文獻回顧 2 2-1 內分泌干擾物質 2 2-1-1 類(抗)雌激素物質 3 2-1-2 類(抗)雄激素物質 6 2-1-3 國內外水體中類(抗)雌激素及類(抗)雄激素比較 8 2-2 生物試驗法 12 2-2-1 活體內試驗法 12 2-2-2 活體外試驗法 12 2-3 液相層析質譜儀 14 2-4 檢測河川流域簡介 15 2-4-1 淡水河 16 2-4-2 鹽水溪 16 2-4-3 二仁溪 17 2-4-4 阿公店溪 17 2-4-5 高屏溪 17 第三章 實驗方法與步驟 19 3-1 樣本採集 19 3-1-1 河川樣本採集方式 19 3-1-2 河川採樣位置圖 21 3-2 實驗材料與設備 23 3-2-1 藥品與試劑 23 3-2-2 基因重酵組母菌 25 3-2-3 實驗設備 26 3-3 實驗步驟 27 3-3-1 前處理 27 3-3-2 生物試驗法 28 3-3-3 液相層析串聯式質譜儀 40 3-3-4 回收率與偵測極限 45 第四章 結果與討論 47 4-1 類(抗)雌激素生物試驗 47 4-1-1 淡水河 47 4-1-2 鹽水溪 49 4-1-3 二仁溪 53 4-1-4 阿公店溪 57 4-1-5 高屏溪 61 4-2 類(抗)雄激素生物試驗 63 4-2-1 淡水河 63 4-2-2 鹽水溪 65 4-2-3 二仁溪 69 4-2-4 阿公店溪 73 4-2-5 高屏溪 77 4-3生物試驗活性結果討論 79 4-3-1 類(抗)雌激素活性 79 4-3-2 類(抗)雄激素活性 83 4-3-3 類(抗)雌激素活性及類(抗)雄激素活性之比較 86 4-4 液相層析串聯式質譜儀分析結果 92 4-4-1河川水相樣本 92 4-4-2 河川懸浮固體相樣本 96 4-5儀器分析與生物試驗結果討論 99 第五章 結論與建議 103 5-1 結論 103 5-2 建議 104 參考文獻 105

    1. Markus Hecker, H.H., Endocrine disruptor screening: regulatory perspectives and needs. Environmental Sciences Europe, 2011. 23: p. 15.
    2. Chang, H.S., et al., The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. Journal of Hazardous Materials, 2009. 172(1): p. 1-12.
    3. Chen, C.Y., et al., Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of the Total Environment, 2007. 378(3): p. 352-365.
    4. Shappell, N.W., et al., Estrogenic activity and steroid hormones in swine wastewater through a lagoon constructed-wetland system. Environmental Science & Technology, 2007. 41(2): p. 444-450.
    5. Tan, B.L.L., et al., Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environment International, 2007. 33(5): p. 654-669.
    6. Calafat, A.M., et al., Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environmental Health Perspectives, 2008. 116(1): p. 39-44.
    7. Richter, C.A., et al., In vivo effects of bisphenol A in laboratory rodent studies. Reproductive Toxicology, 2007. 24(2): p. 199-224.
    8. Ho, S.M., et al., Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research, 2006. 66(11): p. 5624-32.
    9. Luccio-Camelo, D.C. and G.S. Prins, Disruption of androgen receptor signaling in males by environmental chemicals. Journal of Steroid Biochemistry and Molecular Biology, 2011. 127(1-2): p. 74-82.
    10. Wolf, C., Jr., et al., Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health, 1999. 15(1-2): p. 94-118.
    11. Duty, S.M., et al., Phthalate exposure and human semen parameters. Epidemiology, 2003. 14(3): p. 269-77.
    12. Xu, L.C., et al., Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology, 2005. 216(2-3): p. 197-203.
    13. Sharpe, R.M., et al., Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environmental Health Perspectives, 1995. 103(12): p. 1136-43.
    14. Solomon, K.R., et al., Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 1996. 15(1): p. 31-74.
    15. Hayes, T.B., et al., Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences U S A, 2002. 99(8): p. 5476-80.
    16. Birnbaum, L.S. and S.E. Fenton, Cancer and developmental exposure to endocrine disruptors. Environmental Health Perspectives, 2003. 111(4): p. 389-394.
    17. Fisher, B., et al., Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. Journal of the National Cancer Institute, 1998. 90(18): p. 1371-1388.
    18. Liu, X.J., et al., Analysis of hormone antagonists in clinical and municipal wastewater by isotopic dilution liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2010. 396(8): p. 2977-2985.
    19. O'Regan, R.M., et al., Effects of the antiestrogens tamoxifen, toremifene, and ICI 182,780 on endometrial cancer growth. Journal of the National Cancer Institute, 1998. 90(20): p. 1552-8.
    20. Besse, J.P., J.F. Latour, and J. Garric, Anticancer drugs in surface waters What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environment International, 2012. 39(1): p. 73-86.
    21. Svenson, A., et al., Antiestrogenicity and Estrogenicity in Leachates from Solid Waste Deposits. Environmental Toxicology, 2011. 26(3): p. 233-239.
    22. Gillesby, B.E. and T.R. Zacharewski, Exoestrogens: Mechanisms of action and strategies for identification and assessment. Environmental Toxicology and Chemistry, 1998. 17(1): p. 3-14.
    23. Hu, J.Y., G.H. Xie, and T. Aizawa, Products of aqueous chlorination of 4-nonylphenol and their estrogenic activity. Environmental Toxicology and Chemistry, 2002. 21(10): p. 2034-2039.
    24. Fan, Z.L., et al., Behaviors of Glucocorticoids, Androgens and Progestogens in a Municipal Sewage Treatment Plant: Comparison to Estrogens. Environmental Science & Technology, 2011. 45(7): p. 2725-2733.
    25. Backe, W.J., et al., Analysis of Androgenic Steroids in Environmental Waters by Large-Volume Injection Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry, 2011. 83(7): p. 2622-2630.
    26. Nyholm, J.R., et al., Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Chemosphere, 2008. 73(2): p. 203-8.
    27. McKinnell, C., et al., Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol. Journal of Andrology, 2001. 22(2): p. 323-338.
    28. Portigal, C.L., et al., Polychlorinated biphenyls interfere with androgen-induced transcriptional activation and hormone binding. Toxicology and Applied Pharmacology, 2002. 179(3): p. 185-194.
    29. List, H.J., et al., Effects of antiandrogens on chromatin remodeling and transcription of the integrated mouse mammary tumor virus promoter. Experimental Cell Research, 2000. 260(1): p. 160-165.
    30. 林依鈴, 臺灣環境水體中類雌激素/類雄激素物質之流布. 國立成功大學 碩士論文, 2012.
    31. Viglino, L., et al., Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS. Talanta, 2008. 76(5): p. 1088-96.
    32. Wang, L., et al., Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environmental Pollution, 2011. 159(1): p. 148-56.
    33. Petrovic, M., et al., Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on feral carp. Environmental Toxicology and Chemistry, 2002. 21(10): p. 2146-2156.
    34. Bellet, V., et al., Occurrence of androgens in sewage treatment plants influents is associated with antagonist activities on other steroid receptors. Water Research, 2012. 46(6): p. 1912-1922.
    35. Cargouet, M., et al., Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 2004. 324(1-3): p. 55-66.
    36. Pawlowski, S., et al., Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. Toxicology in Vitro, 2004. 18(1): p. 129-138.
    37. Agency., I.J.M.H.C.R.T.G.B.E., Assessment of (anti-) oestrogenic and (anti-) androgenic activities of final effluents from sewage treatment works. 2007.
    38. Leusch, F.D., et al., Bioassay-derived androgenic and estrogenic activity in municipal sewage in Australia and New Zealand. Ecotoxicology and Environmental Safety, 2006. 65(3): p. 403-11.
    39. Thomas, K.V., et al., An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries. Environmental Toxicology and Chemistry, 2002. 21(7): p. 1456-1461.
    40. Soto, A.M., et al., Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in eastern Nebraska, USA. Environ Health Perspect, 2004. 112(3): p. 346-352.
    41. Bellet, V., et al., Occurrence of androgens in sewage treatment plants influents is associated with antagonist activities on other steroid receptors. Water Res, 2012. 46(6): p. 1912-1922.
    42. Thomas, K.V., et al., Effect-Directed Identification of Naphthenic Acids As Important in Vitro Xeno-Estrogens and Anti-Androgens in North Sea Offshore Produced Water Discharges. Environmental Science Technology, 2009. 43(21): p. 8066-8071.
    43. Urbatzka, R., et al., Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere, 2007. 67(6): p. 1080-1087.
    44. Zhao, J.L., et al., Screening of Multiple Hormonal Activities in Surface Water and Sediment from the Pearl River System, South China, Using Effect-Directed in Vitro Bioassays. Environmental Toxicology and Chemistry, 2011. 30(10): p. 2208-2215.
    45. Shi, W., et al., Endocrine-disrupting equivalents in industrial effluents discharged into Yangtze River. Ecotoxicology, 2009. 18(6): p. 685-692.
    46. Grover, D.P., et al., Endocrine disrupting activities in sewage effluent and river water determined by chemical analysis and in vitro assay in the context of granular activated carbon upgrade. Chemosphere, 2011. 84(10): p. 1512-1520.
    47. Vulliet, E., et al., Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 2008. 1210(1): p. 84-91.
    48. Chen, T.S., et al., High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Science of the Total Environment, 2010. 408(16): p. 3223-30.
    49. Kim, S.D., et al., Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 2007. 41(5): p. 1013-21.
    50. Ko, E.J., et al., Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea. Talanta, 2007. 73(4): p. 674-83.
    51. Furuichi, T., et al., Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay. Water Reserch, 2004. 38(20): p. 4491-4501.
    52. Hohenblum, P., et al., Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Science of the Total Environment, 2004. 333(1-3): p. 185-193.
    53. Pojana, G., et al., Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 2007. 33(7): p. 929-936.
    54. Loos, R., et al., LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 2007. 66(4): p. 690-699.
    55. Legler, J., et al., Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environmental Science & Technology, 2002. 36(20): p. 4410-5.
    56. Scholz, S. and I. Mayer, Molecular biomarkers of endocrine disruption in small model fish. Molecular and Cellular Endocrinology, 2008. 293(1-2): p. 57-70.
    57. USEPA, [www.epa.gov].
    58. Koda, T., et al., Improvement of a sensitive enzyme-linked immunosorbent assay for screening estrogen receptor binding activity. Environmental Toxicology and Chemistry, 2002. 21(12): p. 2536-41.
    59. Wang, S., et al., Proliferation assays for estrogenicity testing with high predictive value for the in vivo uterotrophic effect. Journal of Steroid Biochemistry and Molecular Biology, 2012. 128(3-5): p. 98-106.
    60. Svobodova, K. and T. Cajthaml, New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Applied Microbiology and Biotechnology, 2010. 88(4): p. 839-847.
    61. Alder, L., et al., Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrometry Reviews, 2006. 25(6): p. 838-65.
    62. Penning, T.M., et al., Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications. The Journal of Steroid Biochemistry and Molecular Biology, 2010. 121(3-5): p. 546-55.
    63. Edmond de Hoffmann, V.S., Mass spectrometry: Principles and Applications.
    64. 新北市政府環境保護局 [http://www.epd.ntpc.gov.tw].
    65. 行政院環境保護署 [http://www.epa.gov.tw/].
    66. 京華工程顧問股份有限公司, 南部地區河川污染整治與水質改善策略規劃及執行計畫. 2011.
    67. 101 年度屏東縣流域及水污染源稽查管制計畫 2012.
    68. 全國環境水質監測資訊網 [http://wq.epa.gov.tw].
    69. 行政院環境保護署環境檢驗所, 河川、湖泊及水庫水質採樣通則. 2005.
    70. 行政院環境保護署環境檢驗所, 水中總溶解固體及懸浮固體檢測方法. 2006.
    71. Routledge, E.J. and J.P. Sumpter, Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry, 1996. 15(3): p. 241-248.
    72. Rodbard, D., ed. Mathematics and statistics of ligand assay: An illustrated guide. Ligand Assay: analysis of international developmants on isotopic and nonisotopic immunoassay, ed. J.L.a.J.J. Clapp1981, Masson: New York.
    73. Rajapakse, N., E. Silva, and A. Kortenkamp, Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect, 2002. 110(9): p. 917-921.
    74. Beck, I.C., R. Bruhn, and J. Gandrass, Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere, 2006. 63(11): p. 1870-8.
    75. Yordy, J.E., et al., Complex Contaminant Exposure in Cetaceans: A Comparative E-Screen Analysis of Bottlenose Dolphin Blubber and Mixtures of Four Persistent Organic Pollutants. Environmental Toxicology and Chemistry, 2010. 29(10): p. 2143-2153.
    76. Buckley, J.A., Quantifying the Antiestrogen Activity of Wastewater Treatment Plant Effluent Using the Yeast Estrogen Screen. Environmental Toxicology and Chemistry, 2010. 29(1): p. 73-78.
    77. Urbatzka, R., et al., Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere, 2007. 67(6): p. 1080-7.
    78. Fernandez, M.P., M.G. Ikonomou, and I. Buchanan, An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of the Total Environment, 2007. 373(1): p. 250-269.
    79. Tamura, H., et al., Structural basis for androgen receptor agonists and antagonists: Interaction of SPEED 98-listed chemicals and related compounds with the androgen receptor based on an in vitro reporter gene assay and 3D-QSAR. Bioorganic & Medicinal Chemistry, 2006. 14(21): p. 7160-7174.

    下載圖示 校內:2015-08-30公開
    校外:2018-08-30公開
    QR CODE