簡易檢索 / 詳目顯示

研究生: 黃傭評
Huang, Yung-Ping
論文名稱: 應用河川歷線推估流域含水層參數及地下水補注量
Estimation of Aquifer Parameters and Groundwater Recharge in Basin Using Hydrograph Records
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 123
中文關鍵詞: 瞬間補注理論消退曲線位移法導水係數儲水係數地下水補注量
外文關鍵詞: instantaneous recharge theory, recession-curve-displacement method, transmissivity, storativity, groundwater recharge
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導水係數(Transmissivity)及儲水係數(Storativity)為推估流域地下水補注量之基本含水層參數。本研究係以解析解方法,利用河川歷線資料計算流域含水層參數。河川一般為每年的5月至10月,枯水期為每年的11月至隔年4月。本研究亦考量豐、枯水期之因素,說明本研究之流域含水層參數推估模式於豐、枯水期之適用性。在應用本研究所建立之模式計算水文地質參數過程中,必須使用消退曲線位移法來計算研究區域之退水指數,在求得退水指數同時可一併推估該流域之年地下水補注量。因此,本研究亦以統計分析之方式,來分析流域地下水之補注量。
    本研究結合瞬間補注理論及消退曲線位移法來求解自由含水層之導水係數;並以高屏溪流域、東港溪流域及林邊溪流域為研究對象。研究結果經與現地抽水試驗所得導水係數比較,並以平均絕對誤差分析豐、枯水期退水曲線之適用性。經分析結果可發現,高屏溪流域豐、枯水期之平均絕對誤差為0.48及0.82;東港溪流域豐、枯水期之平均絕對誤差為0.41及0.61;林邊溪流域豐、枯水期平均絕對誤差為1.08及1.71。是故本研究所建立之「含水層參數理論推估模式」可有效計算自由含水層之導水係數,並以豐水期之退水曲線來推估導水係數較為適當。然而利用Rorabaugh 及Simons(1966)退水指數公式雖可求得合理之儲水係數,但部分單一降雨事件所計算而得之儲水係數會有偏小之疑慮。
    在地下水補注量研究中,本研究將高屏溪以溪別及流域分類,溪別分類將高屏溪全流域分成旗山溪流域、荖濃溪流域、隘寮溪流域及高屏溪本流,並與流域分類之高屏溪流域比較,其在顯著水準5%條件下,高屏溪全流域及高屏溪流域常態分布之年地下水補注量各為54.7±13.6億立方公尺及46.6±16.9億立方公尺。另高屏溪全流域及高屏溪流域年地下水補注量比較其誤差百分比大於20%者,佔全部樣本數之34%;此結果顯示以溪流及流域分類對於年地下水補注量推估值仍有其差異性。
    消退曲線位移法會有高估年地下水補注量疑慮之主要原因,若從流域面積與消退指數關係而言,研究成果顯示其兩者關係為正相關,即流域面積越大者,其消退指數越大,單一事件補注量亦越大。再者,消退曲線位移法所計算之補注量為年補注深度,為推估流域年地下水補注量需乘以流域面積,即流域面積越大者,其年地下水補注量越大。因此,消退指數偏大再加上流域面積偏大者之加乘效應,造成高估年地下水補注量之主因。

    In groundwater hydrology, transmissivity (T) and storativity (S) are important parameters in groundwater recharge estimation. This study develops an analytical approach to estimating T in basins with the use of the stream hydrographs of water level and flow records. Our physical model describes T values in unconfined aquifers as large-scale basin T averages. The proposed analytical approach is useful when data on basins are scarce.
    In Taiwan, precipitation varies across locations and seasons. The annual mean rainfall is approximately 2,500 mm, 80% of which falls during the wet season (May–October) and 20% falls during the dry season (November–April). Therefore, this study combines the instantaneous recharge theory, the master recession curve (MRC), and the recession-curve-displacement method to verify estimates of mean basin values. We use stream hydrographic records obtained during the wet and dry seasons. Moreover, statistical methods are applied to estimate groundwater recharge.
    We select hydrographic data on daily mean streamflow and water table obtained from three streamflow gauging stations in southern Taiwan. Mean absolute error (MAE) evaluation criteria are used to select the most appropriate season for T estimation. MAE values in the Kaoping, Dongkang, and Linbian basins during the wet (dry) season are 0.48 (0.82), 0.41 (0.61), and 1.08 (1.71), respectively.
    Three case studies, which compare field records obtained from a pumping test, demonstrate the feasibility of the proposed analytical approach to estimating T. The MRC of the wet season is appropriate in three basins, indicating that a recharge episode can evaluate aquifer reliably based on stream hydrographic records. However, using the recession index formula of Rorabaugh and Simons (1966), some S estimates seem too small.
    In the groundwater recharge study, the case of the Kaoping River is classified as an all-basin case; the Kaoping River basin holds groundwater recharge from the Chishan River basin, Laonong River basin, Ailiao River basin, and Kaoping River. The null hypothesis of normal distribution cannot be rejected at a significance level of 0.05. Furthermore, through the method of moments estimation, we estimate the annual groundwater recharge for the all-basin case and the Kaoping basin at 54.7±13.6 and 46.6±16.9 hundred million m3, respectively. Moreover, a comparison of the error percentages of annual groundwater recharge between the all-basin case and the Kaoping basin reveals that 34% of all samples have 20% or more errors. The analytical results demonstrate that the annual groundwater recharge estimates differ between the all-basin case and the Kaoping basin.
    The analytical results show a positive correlation between basin area and recession index. The recession index and the recharge associated with a single rainfall recharge episode are positively related to the basin area. Specifically, larger basins usually have higher recession indices and recharge from a single rainfall recharge episode. Additionally, in estimating groundwater recharge, we must multiply the recharge depth with the basin area using the recession-curve-displacement method. Integration with a larger area and a higher recession index results in a multiplication effect on groundwater recharge. Thus, groundwater recharge is overestimated in the present research cases.

    摘 要 I ABSTRACT III 誌 謝 V 目 錄 VI 表 目 錄 VIII 圖 目 錄 X 符號說明 XII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究方法 3 第二章 文獻回顧 6 2.1含水層參數文獻回顧 6 第三章 研究方法 12 3.1含水層參數理論模式推導 12 3.1.1求解總地下水排水量 15 3.1.2瞬間補注水位抬升高度 17 3.1.3 含水層參數計算步驟 19 3.2 地下水補注統計分析理論 19 3.2.1 資料補遺 20 3.2.2 統計假設學說 20 3.2.3分布模式之適合度檢定 23 3.2.4地下水補注量超越機率曲線 23 3.3 資料統計標準校檢 24 第四章 研究區域概述 25 4.1 地質因子 25 4.2 水文特性 27 4.3 屏東平原水文地質條件概述 29 第五章 資料分析與討論 34 5.1含水層參數理論模式之推估結果 34 5.1.1常數項參數 34 5.1.2總地下水排水量參數 40 5.1.3含水層參數推估結果 48 5.2 地下水補注統計分析之結果 57 5.2.1 年地下水補注量分析結果 57 5.2.2分布模式之適合度檢定 68 5.2.3年地下水補注量統計分析 78 5.2.4超越機率曲線分析成果 82 第六章 結論與建議 93 5.1結論 93 5.2建議 94 參考文獻 95 附錄A 100 附錄B 106 附錄C 109 附錄D 112 學術著作 121

    1.Bevans, H. E., Estimating Stream-Aquifer Interactions in Coal Areas of Eastern Kansas by Using Streamflow Records, U.S. Geological Survey Water-Supply Paper 2290, pp. 51-64, 1986.
    2.Boussinesq, J., Essai sur la theories des eaus courantes, Momoires presentes par divers savants a l’Academic des Sciences de l’Institut National de France, Tome XXIII, No. 1, 1877.
    3.Bradbury, K. R., and Rothschild, E. R., “A Computerized Technique for Estimating the Hydraulic Conductivity of Aquifers from Specific Capacity Data”, Ground Water, Vol. 23, no. 2, pp. 240-246, 1985.
    4.Chen, W. P. and Lee, C. H., “Estimating Groundwater Recharge from Stream flow Records”, Environmental Geology, Vol. 44, pp. 257-265, 2003.
    5.Daniel, J. F., “Estimating Groundwater Evapotranspiration from Streamflow Records”, Water Resources Research, Vol. 12, No. 3, pp. 360-364, 1976.
    6.Ferris, J. G., Knowles, R. H., Browne, R. H., and Stallman, R. W., Theory of Aquifer Tests, U.S. Geological Survey Water Supply Paper 1536-E, 1962.
    7.Fetter, C. W., Applied Hydrogeology, Macmillan College Publishing Company, New York, 2001.
    8.Freeze, R. A. and Cherry, J. A., Groundwater, Prentice Hall, Englewood, Cliffs, New Jersey, 1979.
    9.Friedman M. and Kandel A., Fundamentals of Computer Numerical Analysis, CRC Press, 1994.
    10.Glover, J. M., “Ground-Water Movement”, U.S. Bureau of Reclamation Engineering Monograph Series, No. 31, pp. 21-34, 1964.
    11.Hall, F. R., “Base-Flow Recessions---a Review”, Water Resources Research, Vol. 4, No. 5, pp. 973-983, 1968.
    12.Healy, R. W. and Cook, P. G., “Using Groundwater Levels to Estimate Recharge”, Hydrogeology Journal, Vol.10, pp91-109, 2002.
    13.Huang, Y. P., Lee, C. H. and Ting, C. S., “Improved Estimation of Hydrologic Data Using The Chi-Square Goodness of Fit Test”, Journal of the Chinese Institute of Engineers, Vol. 31, No. 3, pp.515-521, 2008.
    14.Huang Y. P., Kung W. J. and Lee C.H., “Estimating aquifer transmissivity in a basin based on stream hydrograph records using an analytical approach”, DOI: 10.1007/s12665-010-0712-2, Environmental Earth Science, 2010.
    15.Hurr, R. T., “A New Approach for Estimating Transmissivity from Specific Capacity”, Water Resources Research, Vol. 2, No. 4, pp. 657-664, 1966.
    16.Jenkins, C. T., Computation of Rate and Volume of Stream Depletion by Well, U.S. Geological Survey Techniques of Water-Resources Investigation, pp. D1-D4, 1968.
    17.Johnston, R. H., Relation of Ground Water to Surface Water in Four Small Basins of the Delaware Coastal Plain, Delaware Geological Survey Report of Investigations 24, p. 56, 1976.
    18.Kasenow, M., and Pare, P., Using Specific Capacity to Estimate Transmissivity Field and Computer Methods: Highlands Ranch, Colorado, Water Resources Publication, variously paginated, 1995.
    19.Kite, G. W., Frequency and Risk Analysis in Hydrology, Water Resources Publication, Colorado, 1988.
    20.Kruseman, G. P., and de Ridder, N. A., Analysis and evaluation of pumping test data, second edition, International Institute for Land Reclamation and Improvement, Publication 47, Wageningen, The Nederlands, p. 337, 1990.
    21.Linsley, R. K., Jr., Kohler, M. A. and Paulhus, J. L. H., Hydrology for Engineers, 3rd ed., McGraw-Hill, New York, p. 508, 1982.
    22.Lee C. H., Chen W. P. and Lee R. H., “Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis”, Environmental Geology, Vol. 51, pp. 73-82, 2006.
    23.Moore, G. K., “Hydrograph Analysis in a Fractured Rocks Terrane”, GroundWater, Vol. 30, pp. 390-395, 1992.
    24.Narasimhan, T. N., “Note on A New Approach for Estimating Transmissibility from Specific Capacity by R. Theodore Hurr”, Water Resources Research, Vol. 3, No. 4, pp. 1093-1095, 1967.
    25.Ponce, V. M., Engineering Hydrology: Principles and Practices, Prentice Hall, Englewood, Cliffs, New Jersey, 1989.
    26.Ponce V. M., Kumar S. and Ercan S., Estimation of regional aquifer parameters using baseflow recession data. Http://attila.sdsu.edu/~ponce/baseflowpaper.pdf, 2001.
    27.Rorabaugh, M. I., “Use of Water Levels in Estimating Aquifer Constant”, Internat. Assoc. Sci. Hydrology, Publ. Vol.52, pp. 314-323, 1960.
    28.Rorabaugh, M. I., “Estimating Changes in Bank Storage and Ground-Water Contribution to Streamflow”, Internat. Assoc. Sci. Hydrology, Publ. 63, pp. 432-441, 1964.
    29.Rorabaugh, M. I. and Simons W. D., Exploration of Methods Relating Ground Water to Surface Water, Columbia River Basin-Second phuse, U.S. Geological Survey Openfile Report, pp. 62, 1966.
    30.Rutledge, A. T., A New Method for Calculating a Mathematical Expression for Streamflow Recession, in Ritter, W. F., ed., Irrigation and Drainage. National Conference on Irrigation and Drainage, American Society of Civil Engineers, Irrigation and Drainage Division, Honolulu, Hawaii, Proceedings, pp.337-343, 1991.
    31.Rutledge, A. T., Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water Recharge and Discharge from Streamflow Records. U.S. Geological Survey Water-Resources Investigation Report 93-4121, pp. 45, 1993.
    32.Rutledge A. T., “Update on the use of the RORA program for recharge estimation”, Groundwater, Vol.45, pp. 374-382, 2007.
    33.Stricker, V. A., Base Flow of Streams in the Outcrop Area of Southeastern Sand Aquifer: South Carolina, Georgia, Alabama, and Mississippi, U.S. Geological Survey Water-Resources Investigation Report 83-4106, p. 17, 1983.
    34.Tallaksen, L. M., “A Review of Baseflow Recession Analysis”, Journal of Hydrology, 165, pp. 349-370, 1995.
    35.Theis, C. V., The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage: Transactions of the American Geophysical Union, Vol. 16, p. 519-524, 1935.
    36.Theis, C. V., Estimating the Transmissivity of a Water-Table Aquifer from the Specific Capacity of a Well, U.S. Geological Survey Water Supply Paper 1536-I, pp.332-336, 1963.
    37.Ting, C. S., Groundwater Resources Evaluation and Management for Pingtung Plain, Taiwan. PhD Thesis, Free University of Amsterdam, the Netherlands. ISBN 909008794x, 1997.
    38.Trainer F. W., Watkins Jr. F. A., Use of base-runoff recession curves to determine areal transmissivities in the Upper Potomac River Basin. USGS J Res 2:125-131, 1974.
    39.Vitvar, T., Burns, D. A., Lawrence, G. B, McDonnell, J. J and Wolock, D. M., “Estimation of Baseflow Residence Times in Watersheds from the Runoff Hydrograph Recession: Method and Application in the Neversink Watershed, Catskill Mountains, New York”, Hydrological Processes, Vol. 16, pp. 1871-1877, 2002.
    40.Walton, W. C., Groundwater Resource Evaluation, McGraw-Hill, New York, 1970.
    41.Wolfram MathWorld, Normal Distribution, http://mathworld.wolfram.com/NormalDistribution.html, 2009.
    42.Wolock, D. M., Fan, J. and Lawrence, G. B., “Effects of Basin Size on Low-Flow Stream Chemistry and Subsurface Contact Time the Neversink River Watershed, New York”, Hydrological Processes, Vol. 11, pp. 1273-1286, 1997.
    43.台灣省政府建設廳地下水工程處,「屏東平原地下水源勘察報告」,1961。
    44.江崇榮、黃智昭、陳瑞娥、汪中和、費立沅,「屏東平原地下水之補注區、補注源及補注量」,第六屆地下水資源及水質保護研討會論文集,pp. 359-368,2004。
    45.李俊宏,「東港溪流域水文特性之研究」,國立台灣師範大學碩士論文,pp. 78-83,1997。
    46.徐義人,「工程機率統計學」,國立編譯館,1999。
    47.陳尉平,「由河川流量資料與流量歷線推估地下水補注量」,國立成功大學資源工程系碩士論文,pp. 57-58,1999。
    48.陳尉平,「應用河川流量歷線推估台灣地下水補注量」,國立成功大學資源工程系博士論文,pp. 18-22,2006。
    49.黃傭評,「有記錄地區重現期距洪峰流量分析-高屏溪流域為例」, 國立屏東科技大學土木工程系碩士論文,pp. 7-24,2003.
    50.經濟部,「台灣地區地下水觀測網第一期計畫地下水觀測網之建立及運作管理85年報告度濁水溪沖積扇及屏東平原-地質水文分析及抽水試驗」,1996。
    51.經濟部,「台灣地區地下水觀測網整體計畫84年至85年度濁水溪沖積扇及屏東平原觀測站網建立及運作管理工作報告」,1997。
    52.經濟部,「台灣地區地下水觀測網整體計畫-八十六年至八十七年度濁水溪沖積扇及屏東平原觀測站網建立及運作管理工作報告」,1998。
    53.經濟部水利署水利規劃試驗所,「高屏溪治理規劃檢討」,1997。
    54.經濟部中央地質調查所,「台灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告」,2002。
    55.簡銘成,「屏東平原林邊溪流域地下水補注之研究」,國立屏東科技大學土木工程系碩士論文,p.68,2006。
    56.經濟部水利署,「中華民國93年台灣水文年報第二部份-河川水位及流量」,2004。
    57.龔文瑞、李振誥、陳尉平、葉信富,「以地下水位變動法結合消退曲線位移法評估地下水補注量」,農業工程學報,Vol.53,No.3,pp. 75~87,2007。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE