| 研究生: |
游婷怡 Yu, Ting-Yi |
|---|---|
| 論文名稱: |
對具有非均勻佈署之獵能小細胞的異質網路進行建模與分析 Modeling and Analysis of Heterogeneous Cellular Networks with Non-Uniformly-Distributed Energy Harvesting Small Cells |
| 指導教授: |
劉光浩
Liu, Kuang-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 異質蜂巢網路 、獵能 、馬可夫鏈 、小基地台 、應用隨機幾何 |
| 外文關鍵詞: | heterogeneous cellular network, energy harvesting, Markov chain, small cells, stochastic geometry |
| 相關次數: | 點閱:171 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了能在不增加更多能源消耗及排放更多溫室效應氣體的前提下,滿足使用者對於資料量要求的巨幅成長,我們考慮一個由傳統大基地台以及獵能小基地台組成的異質蜂巢式網路,其中每個小基地台都能夠自周遭環境獵集能量並存於電池中,並且每個小基地台只有在儲存電量足夠進行下行資料傳輸時才會進行服務。我們使用應用隨機幾何技術來模擬基地台的佈建,相較於許多文獻為了分析的簡易性將大、小基地台的位置假設為獨立的卜瓦松隨機點程序,我們採用的是具有相關性的小細胞佈建方式,也就是小基地台僅佈建在和大基地台有一定距離以外的地區。雖然使用這樣的部建方式會增加分析上的複雜度,但卻能夠避免由於卜瓦松隨機點程序的假設所導致部分小基地台與大基地台的位置近乎重疊的不合理情況。此外,不同於多數文獻將所有的基地台都視為滿載的簡化假設,我們以基地台為滿足連線用戶頻寬需求的頻寬使用率定義為基地台負載。我們假設獵能小基地台的電池變化為一離散時間馬可夫鏈,並進一步得到整體網路的斷線機率。我們以模擬結果來驗證理論值,並且探討各關鍵參數對於斷線機率的影響。
In order to meet the explosive growth of data traffic without contributing to excessive energy consumption and greenhouse gas emission, in this work, we consider a heterogeneous cellular network (HCN) composed of conventional macro cells and energy harvesting (EH) small cells. It is assumed that each small-cell base station (SBS) is able to store the energy harvested from the environment in the battery and provide services when there is sufficient energy to perform downlink transmissions. To capture the randomness of BS locations, instead of modeling the locations of macro cell BSs (MBSs) and SBSs as two mutually independent PPPs that may result in impractically small distances between the BSs of different tiers, we use a non-uniform small cell deployment, in which the SBSs are not deployed in the locations within a predetermined distance away from any MBS. Besides, we consider a load aware model and take the user's throughput requirement into consideration, which is more reasonable for a lightly loaded network. The network outage probability is derived by modeling the battery dynamics of an arbitrary SBS as a discrete-time Markov chain. We provide the simulation results to verify the analysis accuracy and demonstrate the impact of a few key system parameters on the outage probability.
[1] S. Singh, H. S. Dhillon, and J. G. Andrews, "Offloading in heterogeneous networks: Modeling, analysis, and design insights," IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2484–2497, May 2013.
[2] J. G. Andrews, F. Baccelli, and R. K. Ganti, "A tractable approach to coverage and rate in cellular networks," IEEE Transactions on Communications, vol. 59, no. 11, pp. 3122–3134, November 2011.
[3] H. Tang, J. Peng, P. Hong, and K. Xue, "Offloading performance of range expansion in picocell networks: A stochastic geometry analysis," IEEE Wireless Communications Letters, vol. 2, no. 5, pp. 511–514, October 2013.
[4] P. S. Yu, J. Lee, T. Q. S. Quek, and Y. W. P. Hong, "Traffic offloading in heterogeneous networks with energy harvesting personal cells-network throughput and energy efficiency," IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1146–1161, February 2016.
[5] H. Wang, X. Zhou, and M. C. Reed, "Coverage and throughput analysis with a non-uniform small cell deployment," IEEE Transactions on Wireless Communications, vol. 13, no. 4, pp. 2047–2059, April 2014.
[6] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications. Chichester, W. Sussex, New York: Wiley, 1987.
[7] R. K. Ganti and M. Haenggi, "Interference and outage in clustered wireless ad hoc networks," IEEE Transactions on Information Theory, vol. 55, no. 9, pp. 4067–4086, September 2009.
[8] 3GPP, "TR 36.942 v11.0.0: Radio frequency (rf) system scenarios (release 11)," September 2012. [Online]. Available: http://www.3pgg.org/
[9] H. S. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, and J. G. Andrews, "Fundamentals of heterogeneous cellular networks with energy harvesting," IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2782–2797, May 2014.
[10] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, "Load-aware modeling and analysis of heterogeneous cellular networks," IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1666–1677, April 2013.
[11] A. Okabe, B. N. Boots, K. Sugihara, and D. G. Kendall, Spatial tessellations : concepts and applications of Voronoi diagrams, ser. Wiley series in probability and mathematical statistics. Chichester, New York, Brisbane: Wiley & Sons, 1992. [Online]. Available: http://opac.inria.fr/record=b1089558
[12] D. Weaire, J. P. Kermode, and J. Wejchert, "On the distribution of cell areas in a voronoi network," Philosophical Magazine Part B, vol. 53, no. 5, pp. L101–L105, 1986.
校內:2019-07-31公開