簡易檢索 / 詳目顯示

研究生: 藍雪湖
Castillo Castro, Daniel Sebastian
論文名稱: 普通重型機車及電動機車生命週期評估研究
Comparative life cycle assessment (LCA) of battery electric and internal combustion engine motorcycles
指導教授: 林心恬
Lin, Hsin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 83
外文關鍵詞: battery electric motorcycle, internal combustion engine motorcycle, life cycle inventory, life cycle assessment, environmental impacts
ORCID: https://orcid.org/ 0000-0002-1550-4709
相關次數: 點閱:102下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Electric motorcycles in conjugation with low carbon-intensive electricity sources provides an opportunity to reduce the greenhouse gases environmental burden and fossil fuel consumption from conventional personal transportation, particularly in Asia. In regard of these advantages, their potential setbacks should also be addressed simultaneously. Consequently, this study offers a transparent life cycle inventory for battery electric (BEM) and internal combustion engine motorcycles (ICEM), which is used to conduct a life cycle assessment (LCA) for these two vehicles across a range of impact categories. This assessment finds that BEM charged with Taiwanese electricity have a lower global warming potential (GWP) of 50.7 g CO2 eq/km relative to gasoline-ICEM 64.8 g CO2 eq/km, under a lifetime scenario of 45,000km driven. Nonetheless, transition from ICEM to BEM also have the potential for considerable increments in freshwater eutrophication, mineral resources depletion, and freshwater, marine, and terrestrial ecotoxicity impacts, most of which come from the motorcycle production chain. The largest impact shifting comes for eutrophication which increases from 101 to 372 mg P eq/km, for ICEM and BEM respectively. This LCA results are sensitive to assumptions made for the motorcycles lifetime, use phase energy consumption, and source of electricity. The electricity source has the largest effects on the BEM impacts. It can reduce the GW impact by 52% with a fully renewable grid or increase the GW by 33% assuming hard-coal electricity generation, which is the only case where BEM impacts exceed those of ICEM. To objectively improve the environmental benefits of BEM over ICEM requires commitments around reducing the motorcycle production impacts and embracing greener electricity sources.

    ABSTRACT i ACKNOWLEDGMENT iii TABLE OF CONTENTS v LIST OF TABLES ix LIST OF FIGURES xi LIST OF ABBREVIATIONS xiii CHAPTER 1 INTRODUCTION 1 1.1. Electric vehicles 1 1.2. Powered two-wheelers 2 1.3. Life cycle assessment 3 1.4. Objectives 4 1.5. Document structure 5 CHAPTER 2 LITERATURE REVIEW 7 2.1. Research context 7 2.2. Scope of the review 7 2.3. Identification of relevant studies 8 2.4. Review scheme 8 2.5. Assessment of literature’s scope 9 2.5.1. Motorcycle manufacturing 12 2.5.2. Electricity and fuel supply chain 12 2.5.3. Use stage 12 2.5.4. End of life 13 2.6. Literature completeness check 13 CHAPTER 3 METHODOLOGY 14 3.1. Introduction to life cycle assessment 14 3.2. Goal and scope definition 15 3.3. Life cycle inventory 18 3.3.1 Motorcycle production 18 3.3.2 Electricity and fuel generation 22 3.3.3 Vehicle use 23 3.3.4 End-of-life 24 3.4. Life cycle impact assessment 24 3.4.1. Impact methodology 24 3.4.2. Impact categories 26 3.5. Limitations 28 CHAPTER 4 RESULTS AND DISCUSSION 30 4.1 Overview 30 4.2 Potential environmental impacts 34 4.2.1 Global warming 34 4.2.2 Human ozone formation 35 4.2.3 Particulate matter formation 36 4.2.4 Terrestrial acidification potential 36 4.2.5 Freshwater eutrophication 37 4.2.6 Terrestrial ecotoxicity 37 4.2.7 Marine ecotoxicity and freshwater ecotoxicity 38 4.2.8 Mineral resource scarcity 38 4.2.9 Fossil resource scarcity 38 4.3 Motorcycles production LCA results 39 4.4 Sensitivity analysis 41 4.4.1 Sensitivity analysis design 41 4.4.2 Sensitivity analysis results 43 4.5 LCA interpretation 44 4.5.1 General findings and policy implications 47 CHAPTER 5 CONCLUSIONS 49 REFERENCES 51 APPENDICES 57 Appendix #1-1 BEM and ICEM production LCI 57 Appendix #1-2 BEM LCI for energy supply, use stage and end-of-life 59 Appendix #1-3 ICEM LCI for energy supply, use stage and end-of-life 61 Appendix #2. Material contribution for BEM production 63 Appendix #3. Material contribution for ICEM production 66 Appendix #4. Impact result from life cycle inventory 69 Appendix #5. EM and ICEM life cycle processes relative contributions 72 Appendix #6. Sensitivity analysis results, differences from base case result 82

    Arenillas, A., Rubiera, F., & Pis, J. J. (2002). Nitric Oxide Reduction in Coal Combustion:  Role of Char Surface Complexes in Heterogeneous Reactions. Environmental Science & Technology, 36(24), 5498-5503. https://doi.org/10.1021/es0208198
    Azapagic, A. (2017). A Life Cycle Approach to Measuring Sustainability. In M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 71-79). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.10036-3
    Baptista, P., Duarte, G., Gonçalves, G., & Farias, T. (2014). Evaluation of low power electric vehicles in demanding urban conditions: An application to Lisbon. 2013 World Electric Vehicle Symposium and Exhibition (EVS27),
    Bastos, J., Marques, P., Batterman, S. A., & Freire, F. (2019). Environmental impacts of commuting modes in Lisbon: A life-cycle assessment addressing particulate matter impacts on health [Article]. International Journal of Sustainable Transportation, 13(9), 652-663. https://doi.org/10.1080/15568318.2018.1501519
    Bishop, J. D. K., Doucette, R. T., Robinson, D., Mills, B., & McCulloch, M. D. (2011). Investigating the technical, economic and environmental performance of electric vehicles in the real-world: A case study using electric scooters [Article]. Journal of Power Sources, 196(23), 10094-10104. https://doi.org/10.1016/j.jpowsour.2011.08.021
    Broman, E., Jawad, A., Wu, X., Christel, S., Ni, G., Lopez-Fernandez, M., Sundkvist, J.-E., & Dopson, M. (2017). Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor. Biodegradation, 28(4), 287-301. https://doi.org/10.1007/s10532-017-9796-7
    Burchart-Korol, D., & Folega, P. (2019). Impact of road transport means on climate change and human health in Poland [Article]. Promet-Traffic & Transportation, 31(2), 195-204. WOS:000470705500008
    Bureau of Energy - Taiwan Ministry of Economic Affairs. (2022). Record of vehicles fuel efficiency. https://www.moeaboe.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=9&menu_id=17623
    Caizzi, A., & Girardi, P. (2001). Comparative LCA of electric mopeds versus internal combustion mopeds Automotive and Transportation Technology Congress and Exposition, Env., both
    Cazzola, P., Crist, P., & International Transport Forum. (2020). Good to go? Assessing the environmental performance of new mobility (Corporate Partnership Board Report, Issue. https://www.itf-oecd.org/good-to-go-environmental-performance-new-mobility
    Chang, C. C., Wu, F. L., Lai, W. H., & Lai, M. P. (2016). A cost-benefit analysis of the carbon footprint with hydrogen scooters and electric scooters [Article]. International Journal of Hydrogen Energy, 41(30), 13299-13307. https://doi.org/10.1016/j.ijhydene.2016.05.168
    Chen, B.-W., Takami, K., Ohmori, N., & Harata, N. (2013). Household Car and Motorcycle Ownership and Transaction Behavior through a Life-Course Approach - a Case in Taipei City. Journal of the Eastern Asia Society for Transportation Studies, 10, 567-585. https://doi.org/10.11175/easts.10.567
    Cherry, C. R., Weinert, J. X., & Xinmiao, Y. (2009). Comparative environmental impacts of electric bikes in China [Article]. Transportation Research Part D-Transport and Environment, 14(5), 281-290. https://doi.org/10.1016/j.trd.2008.11.003
    Chester, M., Horvath, A., University of California, B., & University of California, B. (2009). Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail. In (pp. 107p).
    Cox, B. L., & Mutel, C. L. (2018). The environmental and cost performance of current and future motorcycles [Article]. Applied Energy, 212, 1013-1024. https://doi.org/10.1016/j.apenergy.2017.12.100
    Cuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L. C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. CT&F - Ciencia, Tecnología Y Futuro, 6(3), 123-134. https://doi.org/https://doi.org/10.29047/01225383.13
    Daemme, L. C., Penteado, R., Schneider, P. S., da Rocha, B. P., Piccoli, B. d. S., Errera, M. R., & Corrêa, S. M. (2017). Study of the Energy Efficiency and Greenhouse Emissions from Motorcycles Powered by Electric and Internal Combustion Engines, 26th SAE BRASIL Inernational Congress and Display,
    de Assis, N., da Rocha, B. P., Smith, P., Daemme, L. C., & Penteado, R. (2019). Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario [Article]. Energy, 168, 70-79. https://doi.org/10.1016/j.energy.2018.11.051
    de Bortoli, A. (2021). Environmental performance of shared micromobility and personal alternatives using integrated modal LCA [Article]. Transportation Research Part D-Transport and Environment, 93, 18, Article 102743. https://doi.org/10.1016/j.trd.2021.102743
    Del Duce, A., Widmer, R., Gauch, M., & Hans-Jörg, A. (2013). Ökoinventare für E-Scooter: Stand des Forschungsprojekts. http://www.ikaoe.unibe.ch/forschung/e-scooter/BGF_fes_empa_09042013.pdf
    Dreyer, L. C., Niemann, A. L., & Hauschild, M. Z. (2003). Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. The International Journal of Life Cycle Assessment, 8(4), 191-200. https://doi.org/10.1007/BF02978471
    Eccarius, T., & Lu, C.-C. (2020). Powered two-wheelers for sustainable mobility: A review of consumer adoption of electric motorcycles. International Journal of Sustainable Transportation, 14(3), 215-231. https://doi.org/10.1080/15568318.2018.1540735
    Ecoinvent Center. (2021). Ecoinvent data and reports v3.7. https://ecoinvent.org/the-ecoinvent-database/
    Etter, N., Graf, C., Cox, B., Notter, B., & INFRAS. (2021). Handbook Emission Factors for Road Transport. https://www.hbefa.net/e/index.html
    Regulation (EU) No 168/2013 of the European Parliament and of the Council of 15 January 2013 on the Approval and Market Surveillance of Two- or Three-Wheel Vehicles and Quadricycles., pp. 52–128. (2013). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:060:0052:0128:EN:PDF#:~:text=This%20Regulation%20establishes%20the%20requirements,and%20equipment%20for%20such%20vehicles.
    Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/ 77/EC, 2003/30/EC and 2009/28/EC, (2018). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001
    European Commission Joint Research Center, JRC. (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Provisions and Action Steps. In (Vol. EUR 24378 EN). Luxembourg (Luxembourg): Publications Office of the European Union.
    European Environment Agency, EEA. (2019). EMEP/EEA air pollutant emission inventory guidebook 2019 - Technical guidance to prepare national emission inventories. P. O. o. t. E. Union.
    Gogoro. (2021). Smartscooter® Spec. https://www.gogoro.com/smartscooter/specs/
    London’s electric vehicle infrastructure strategy, (2009). https://www.walthamforest.gov.uk/sites/default/files/2021-12/ke88-london-electric-vehicle-infrastructure-strategy.pdf
    Habibie, A., Hisjam, M., Sutopo, W., & Nizam, M. (2021). Sustainability evaluation of internal combustion engine motorcycle to electric motorcycle conversion. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8(2), 469-476. https://doi.org/10.5109/4480731
    Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., De Schryver, A., Humbert, S., Laurent, A., Sala, S., & Pant, R. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697. https://doi.org/10.1007/s11367-012-0489-5
    Hawkins, T. R., Gausen, O. M., & Strømman, A. H. (2012). Environmental impacts of hybrid and electric vehicles—a review. The International Journal of Life Cycle Assessment, 17(8), 997-1014. https://doi.org/10.1007/s11367-012-0440-9
    Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53-64. https://doi.org/https://doi.org/10.1111/j.1530-9290.2012.00532.x
    Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y
    Hwang, J. J., & Chang, W. R. (2010). Life-cycle analysis of greenhouse gas emission and energy efficiency of hydrogen fuel cell scooters [Article]. International Journal of Hydrogen Energy, 35(21), 11947-11956. https://doi.org/10.1016/j.ijhydene.2010.07.148
    International Energy Agency. (2021a). Global EV Outlook 2001. https://www.iea.org/reports/global-ev-outlook-2021
    International Energy Agency. (2021b). World Energy Outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021
    International Organization for Standardization. (2006a). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. In: ISO.
    International Organization for Standardization. (2006b). ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines. In: ISO.
    Kerdlap, P., & Gheewala, S. H. (2016). Electric Motorcycles in Thailand A Life Cycle Perspective [Article]. Journal of Industrial Ecology, 20(6), 1399-1411. https://doi.org/10.1111/jiec.12406
    Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E., Hauschild, M. Z., & Christensen, T. H. (2014). Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives. Waste Management, 34(3), 573-588. https://doi.org/https://doi.org/10.1016/j.wasman.2013.10.045
    Leuenberger, M. F., Rolf; ESU-services Ltd. (2010). Life Cycle Assessment of Two Wheel Vehicles.
    Levy, M. (2017). Life Cycle Analysis—Strengths and Limitations of LCA. In M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 233-236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.10062-4
    Majumdar, D., Majumder, A., & Jash, T. (2016). Performance of Low Speed Electric Two-wheelers in the Urban Traffic Conditions: A Case Study in Kolkata. Energy Procedia, 90, 238-244. https://doi.org/https://doi.org/10.1016/j.egypro.2016.11.190
    Mendes, M., Duarte, G., & Baptista, P. (2015). Introducing specific power to bicycles and motorcycles: Application to electric mobility [Article]. Transportation Research Part C-Emerging Technologies, 51, 120-135. https://doi.org/10.1016/j.trc.2014.11.005
    Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., & Althaus, H.-J. (2010). Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology, 44(17), 6550-6556. https://doi.org/10.1021/es903729a
    Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
    Park, J., Kim, S., & Suh, K. (2018). A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas [Article]. Sustainability, 10(3), 15, Article 888. https://doi.org/10.3390/su10030888
    Pasquale, A., & Maurizio, M. (2015). Ozone formation in relation with combustion processes in highly populated urban areas. AIMS Environmental Science, 2(3), 764-781. https://doi.org/10.3934/environsci.2015.3.764
    PRé, Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2016). Introduction to LCA with SimaPro. https://pre-sustainability.com/legacy/download/SimaPro8IntroductionToLCA.pdf
    Rogers, N. (2008). Trends in Motorcycles Fleet Worldwide. Joint OECD/ITF Transport Research Committee Workshop on Motorcycling Safety,
    Schelte, N., Severengiz, S., Schunemann, J., Finke, S., Bauer, O., & Metzen, M. (2021). Life Cycle Assessment on Electric Moped Scooter Sharing [Article]. Sustainability, 13(15), 20, Article 8297. https://doi.org/10.3390/su13158297
    Severengiz, S., Finke, S., Schelte, N., & Forrister, H. (2020). Assessing the Environmental Impact of Novel Mobility Services using Shared Electric Scooters as an Example 17th Global Conference on Sustainable Manufacturing,
    Taipower. (2022). Historical power supply and demand information. https://www.taipower.com.tw/en/news_noclassify.aspx?mid=4440
    Taiwan Ministry of Transportation. (2022). General Administration of Highways of the Ministry of Transportation - Statistical Inquiry Network. https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=defjsp&fbclid=IwAR2TLXpqXtHMD-tdt5JrZqnjZHMgIY9U3r50LrNaETFkcJLHhKWX12zfTnc
    Tuayharn, K., Kaewtatip, P., Ruangjirakit, K., & Limthongkul, P. (2015). ICE Motorcycle and Electric Motorcycle: Environmental and Economic Analysis The 11th International Conference on Automotive Engineering,
    U.S. Department of Energy. (2015). One million electric vehicles by 2015.
    United Nations. (2021). Sustainable transport, sustainable development. https://sdgs.un.org/sites/default/files/2021-10/Transportation%20Report%202021_FullReport_Digital.pdf
    Vimmerstedt, J. P., House, M. C., Larson, M. M., Kasile, J. D., & Bishop, B. L. (1989). Nitrogen and Carbon accretion on Ohio coal minesoils: Influence of soil-forming factors. Landscape and Urban Planning, 17(2), 99-111. https://doi.org/https://doi.org/10.1016/0169-2046(89)90018-2
    Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation - A review of the environmental, economic, and social performance of electric two-wheelers [Article]. Transportation Research Part D-Transport and Environment, 41, 348-366. https://doi.org/10.1016/j.trd.2015.09.007
    World Health Organization. (2013). WHO global status report on road safety 2013: supporting a decade of action. World Health Organization. https://apps.who.int/iris/handle/10665/78256
    Wortmann, C., Syré, A. M., Grahle, A., & Göhlich, D. (2021). Analysis of electric moped scooter sharing in berlin: A technical, economic and environmental perspective. World Electric Vehicle Journal, 12(3). https://doi.org/10.3390/wevj12030096

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE