簡易檢索 / 詳目顯示

研究生: 許育誠
Hsu, Yu-Cheng
論文名稱: 即時性之路徑規劃於危險物品運輸-多目標基因演算法之應用
Real Time Route Optimization for Hazmat Transportation: A Multi-objective Genetic Algorithm
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 100
中文關鍵詞: 危險物品運輸多目標基因演算法即時性路徑規劃
外文關鍵詞: Hazmat transportation, Multi-objective, Genetic algorithm, Real time, Route planning
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來危險物品的風險管理已成為全世界的重要課題,特別是在以工業為主的國家裡,因其危險物品之事故往往會造成環境和社會嚴重的破壞。在2014年,作為台灣石化工業重鎮的高雄市,因其管線設計不當以及疏於維護,發生嚴重的管線氣爆事件,日後考量到高雄市居民對於舊管線仍存在著安全之疑慮,故高雄市政府即宣布汰除舊有管線,則改以化學槽車來運送危險物品,雖然如此,槽車的行駛路線仍會造成民眾與車輛有一定程度的危害風險,因此,此事件突顯出危險品運輸路線設計的重要性,台灣國內也應對此課題加以關注。
    相較於國外對於危險物品運輸路徑規劃之研究趨於完整,台灣國內則尚未有完善的管理部門及研究計畫,再者,過去國外文獻中所提出的模型大多以靜態路網作為試驗,故本研究於危險物品運輸之最佳路徑中考量動態元素,以因應即時的交通路網路況。另外,在未來城市趨於智慧化的形況下,透過感測器甚至是物聯網之通訊設備,將擁有更多即時性的交通數據作為監控管理,且日後也能應用於危險物品路徑規劃上做更精準之決策。
    本研究建構一模型為即時性之路徑規劃於危險物品運輸,在考量運輸風險和運輸成本之目標下,納入動態元素如隨時間變動之車流量、平均旅行時間當作評估項目,並基於多目標基因演算法求解最佳路徑,結果則以高雄氣爆案周遭路網做實證,將產生之結果繪於路網中。其中,對於設定的起訖對分別以個別以及同時考慮多起迄對的方式來呈現其變化,最後,設定不同之演算法參數以比較結果之優劣。期望提供政府、居民以及業者(化工廠、煉油廠、油罐車業者)對於危險品運輸更進一步之參考與建議。

    On July 30, 2014, a series of gas pipeline explosion accidents occurred in the Kaohsiung City, Taiwan, which caused 32 people killed and 321 others injured. After this, local government decided to substitute chemical truck for pipeline transporting hazmat, so the risk of hazmat accidents was transferred to the city road system. Therefore, the risk management of route for hazmat transporting needs to be noticed.
    Hazmat transportation accidents usually followed with catastrophic losses and cause heavy impact to society and environment, especially in populous or heavy traffic area such Taiwan city. Further, the real traffic conditions are changing rapidly, which leads to many uncertainties. Despite a large number of researches discussing the route planning of hazmat transportation, most are static research. Thus, this research adopts dynamic traffic characteristics. Besides, more and more cities tend to develop smart city, which implies a growing number of real time traffic data are generated. That also could provide decision maker to generate better decisions for hazmat transportation.
    This research aims to develop a model for real time route optimization of hazmat transportation based on multi-objective genetic algorithm. We consider two objectives (transportation risk and cost) involving traffic travel time and traffic volume. The proposed model is tested on realistic Kaohsiung network. Finally, the results present the optimal routes of single O-D pair, multiple O-D pairs, and sensitivity analysis. This research is expected to provide some recommendations and references for related stakeholders such as hazmat industries, government, and residents.

    ABSTRACT.....I 摘要.....II TABLE OF CONTENTS.....III LIST OF TABLES.....V LIST OF FIGURES.....VI CHAPTER 1 INTRODUCTION.....1 1.1 Research Background and Motivation.....1 1.2 Research Objectives.....3 1.3 Research Flow Chart.....4 CHAPTER 2 LITERATURE REVIEW.....7 2.1 Hazmat Transportation.....7 2.1.1 International Regulations and Definitions.....8 2.1.2 Hazmat Transportation Accidents in United States.....9 2.1.3 Hazmat Transportation Accidents in Taiwan.....10 2.2 Risk Assessment for Hazmat transportation.....11 2.3 Multi-objective Optimization Approach.....13 2.3.1 General Form of Multi-objective Optimization.....14 2.3.2 Application of Multiple Objective Approach in Hazmat Management.....17 2.4 Genetic Algorithm.....21 2.4.1 Multi-objective Genetic Algorithm (MOGA).....24 2.5 Real Time Hazmat Route Problem.....27 2.5.1 Static and Dynamic Components.....28 2.5.2 Applications of Real Time Hazmat Route Problem.....29 2.6 Summary.....30 CHAPTER 3 RESEARCH METHODOLOGY.....32 3.1 Conceptual Framework.....32 3.2 Problem Statement and Research Assumptions.....33 3.3 Research Framework.....34 3.4 Model Formulation.....36 3.4.1 Definition of Criteria.....37 3.4.2 Formulation.....40 3.5 Solution Algorithm.....42 3.5.1 Procedure of Genetic Algorithm.....44 3.5.2 Procedure of NSGA-II.....46 CHAPTER 4 EMPIRICAL STUDY.....53 4.1 Data Description.....53 4.1.1 Basic Data of Experimental Network.....55 4.1.2 Hazmat Impact Radius.....56 4.1.3 Population Density.....58 4.2 Program Flowchart.....59 4.3 Results of Analysis.....62 4.3.1 Sensitivity Analysis.....62 4.3.2 Single O-D Pair.....68 4.3.3 Multiple O-D Pairs.....75 4.3.4 Weighting Objectives.....83 4.4 Summary.....87 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS.....89 5.1 Conclusions.....89 5.2 Suggestions.....90 REFERENCES.....91 APPENDIX.....96

    1.Chen, Y.-W., Wang, C.-H., & Lin, S.-J. (2008), “A multi-objective geographic information system for route selection of nuclear waste transport.” Omega, 36(3), pp. 363-372.
    2.Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., & Scholl, H. J. (2012), “Understanding smart cities: An integrative framework.” Paper presented at the System Science (HICSS), 2012 45th Hawaii International Conference on.
    3.Current, J., & Ratick, S. (1995), “A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials.” Location Science, 3(3), pp. 187-201.
    4.Deb, K. (2014), “Multi-objective optimization Search methodologies.” pp. 403-449: Springer.
    5.Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002), “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.
    6.Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006), “Metaheuristics for hard optimization: methods and case studies.” Springer Science & Business Media.
    7.Erkut, E., & Ingolfsson, A. (2005), “Transport risk models for hazardous materials: revisited.” Operations Research Letters, 33(1), pp. 81-89.
    8.Erkut, E., & Verter, V. (1998), “Modeling of transport risk for hazardous materials.” Operations research, 46(5), pp. 625-642.
    9.Faghih-Roohi, S., Ong, Y.-S., Asian, S., & Zhang, A. N. (2016), “Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks.” Annals of Operations Research, 247(2), pp. 715-734. doi:10.1007/s10479-015-1909-2
    10.Fonseca, C. M., & Fleming, P. J. (1993), “Genetic Algorithms for Multi-objective Optimization: Formulation Discussion and Generalization.” Paper presented at the Icga.
    11.Gen, M., & Cheng, R. (2000), “Genetic algorithms and engineering optimization.” (Vol. 7): John Wiley & Sons.
    12.Gen, M., Cheng, R., & Lin, L. (2008), “Network models and optimization: Multiobjective genetic algorithm approach.” Springer Science & Business Media.
    13.Giannikos, I. (1998), “A multi-objective programming model for locating treatment sites and routing hazardous wastes.” European Journal of Operational Research, 104(2), pp. 333-342.
    14.Giglio, D., Minciardi, R., Pizzorni, D., Rudari, R., Sacile, R., Tomasoni, A., & Trasforini, E. (2004), “Towards a decision support system for real time risk assessment of hazardous material transport on road.”
    15.Holland, J. H. (1975), “Adaptation In Natural and Artificial Systems.” University of Michigan Press, Ann Arbor.
    16.Hsu, J.-Y. (2003), “Mutiple Criteria Decision Macking.”(revised edition): wunan
    17.Ishibuchi, H., & Murata, T. (1998), “A multi-objective genetic local search algorithm and its application to flowshop scheduling.” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), pp. 392-403.
    18.Kang, Y., Batta, R., & Kwon, C. (2014), “Value-at-risk model for hazardous material transportation.” Annals of Operations Research, 222(1), pp. 361-387.
    19.Kwon, C. (2011), “Conditional value-at-risk model for hazardous materials transportation.” Paper presented at the Simulation Conference (WSC), Proceedings of the 2011 Winter.
    20.Li, R., & Leung, Y. (2011), “Multi-objective route planning for dangerous goods using compromise programming.” Journal of Geographical Systems, 13(3), pp. 249-271.
    21.Li, R., Leung, Y., Huang, B., & Lin, H. (2013), “A genetic algorithm for multiobjective dangerous goods route planning.” International Journal of Geographical Information Science, 27(6), pp. 1073-1089.
    22.Li, X., & Jiang, H. (2013), “Optimization for Hazardous Materials Road Transportation Based on Multi-objective Method.” Paper presented at the Intelligent System Design and Engineering Applications (ISDEA), 2013 Third International Conference on.
    23.LIAO, T.-Y., HU, T.-Y., CHANG, Y.-H., & HSU, C.-F. (2017) , “A Multi-objective Compromise Weight Model for Hazmat Transportation Problems with the Consideration of Response Capability.” Journal of the Eastern Asia Society for Transportation Studies, 12, pp. 2035-2053.
    24.Pamučar, D., Ljubojević, S., Kostadinović, D., & Đorović, B. (2016), “Cost and risk aggregation in multi-objective route planning for hazardous materials transportation—A neuro-fuzzy and artificial bee colony approach.” Expert Systems with Applications, 65, pp. 1-15.
    25.Qu, H., Xu, J., Wang, S., & Xu, Q. (2018), “Dynamic Routing Optimization for Chemical Hazardous Material Transportation under Uncertainties.” Industrial & Engineering Chemistry Research, 57(31), pp. 10500-10517. doi:10.1021/acs.iecr.8b00787
    26.Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018), “Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types.” Journal of Cleaner Production, 170, pp. 227-241.
    27.Rocha, M., & Neves, J. (1999), “Preventing Premature Convergence to Local Optima in Genetic Algorithms via Random Offspring Generation.” International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 127-136.
    28.Samanlioglu, F. (2013), “A multi-objective mathematical model for the industrial hazardous waste location-routing problem.” European Journal of Operational Research, 226(2), pp. 332-340.
    29.Schaffer, J. D. (1985), “Multiple objective optimization with vector evaluated genetic algorithms.” Paper presented at the Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985.
    30.Sivanandam, S., & Deepa, S. (2008), “Genetic algorithm optimization problems.” Introduction to Genetic Algorithms, pp. 165-209, Springer.
    31.Srinivas, N., & Deb, K. (1994), “Multi-objective optimization using nondominated sorting in genetic algorithms.” Evolutionary computation, 2(3), pp. 221-248.
    32.Toumazis, I., & Kwon, C. (2013), “Routing hazardous materials on time-dependent networks using conditional value-at-risk.” Transportation Research Part C: Emerging Technologies, 37, pp. 73-92.
    33.Wijeratne, A. B., Turnquist, M. A., & Mirchandani, P. B. (1993), “Multiobjective routing of hazardous materials in stochastic networks.” European Journal of Operational Research, 65(1), pp. 33-43.
    34.Yu, H., & Solvang, W. D. (2016), “An improved multi-objective programming with augmented ε-constraint method for hazardous waste location-routing problems.” International journal of environmental research and public health, 13(6), pp. 548.
    35.Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014), “Internet of things for smart cities.” IEEE Internet of Things journal, 1(1), pp. 22-32.
    36.Zhou, Z., Chu, F., Che, A., & Mammar, S. (2012), “A multi-objective model for the hazardous materials transportation problem based on lane reservation.” Paper presented at the Networking, Sensing and Control (ICNSC), 2012 9th IEEE International Conference on.
    37.Zionts, S., & Wallenius, J. (1976), “An interactive programming method for solving the multiple criteria problem.” Management science, 22(6), pp. 652-663.
    38.Zitzler, E., Laumanns, M., & Thiele, L. (2001), “SPEA2: Improving the strength Pareto evolutionary algorithm.” TIK-report, 103.
    39.Zitzler, E., & Thiele, L. (1999), “Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach.” IEEE Transactions on Evolutionary Computation, 3(4), pp. 257-271.
    40.Zografos, K. G., & Davis, C. F. (1989), “Multi-objective programming approach for routing hazardous materials.” Journal of transportation engineering, 115(6), pp. 661-673.
    41.Federal Motor Carrier Safety Administration. (2001), “Comparative Risks of Hazardous Materials and Non-Hazardous Materials Truck Shipment Accidents/ Incidents.”
    42.Hazardous Material Transportation Act of 1975, § 49 U.S.C. §§ 5101-5127 (1975),
    43.Toxic Chemical Substances Transportation Management Regulations, § section 3 (1999).
    44.UNECE (2017), “European Agreement concerning the International Carriage of Dangerous Goods by Road.”
    45.Pipeline and Hazardous Materials Safety Administration. (2018), “Hazmat Summary by Mode of Transportation, Incident Statistics.”
    46.道路交通安全規則第八十四條(2011)
    47.高雄市政府交通局(2014),《高雄市運送危險物品罐槽車限定行駛路線》。
    48.監察院(2015),糾正案文調查報告(字號103080011)。
    49.自由時報《彰化西濱快速道化學車翻覆 駕駛壓車底命危》
    http://news.ltn.com.tw/news/society/breakingnews/2495730
    50.自由時報《台72線化學槽車撞BMW 3輕重傷送醫》
    http://news.ltn.com.tw/news/society/breakingnews/2490732
    51.ETtoday新聞雲《化學槽車翻覆台15線 9噸硫酸洩漏》
    https://www.ettoday.net/news/20180326/1138267.htm
    52.自由時報《苗栗化學槽車翻覆 司機自行脫困氯乙烯未外洩》
    http://www.chinatimes.com/realtimenews/20180301003492-260402
    53.自由時報《花蓮甲醇槽車翻覆 駕駛輕傷未受困》
    http://news.ltn.com.tw/news/society/breakingnews/2327910
    54.自由時報《林園化學槽車翻覆 化學原料外洩流進排水溝》
    http://news.ltn.com.tw/news/society/breakingnews/2259946
    55.自由時報《馬路驚見雲海…高雄化學槽車翻覆 氬氣外洩幸無傷亡》
    http://news.ltn.com.tw/news/Kaohsiung/breakingnews/2232535
    56.自由時報《化學槽車翻覆苯乙烯外漏 消防持續警戒》
    http://news.ltn.com.tw/news/society/breakingnews/2174036
    57.自由時報《大寮化學槽車氣體外洩 環局開罰10萬元》
    http://news.ltn.com.tw/news/life/breakingnews/2081361
    58.自由時報《國1嘉義水上南下路段 化學槽車液體外洩》
    https://news.ltn.com.tw/news/society/breakingnews/2675045
    59.中時電子報《祝融吞噬化學槽車 國3沙鹿段烈焰竄天》
    https://www.chinatimes.com/realtimenews/20190109004366-260402?chdtv
    60.中央通訊社《翻覆槽車吊離 舊蘇花公路單線管制放行》
    https://www.cna.com.tw/news/ahel/201901240295.aspx
    61.聯合新聞網《疑剎車不靈 台中清水滿載氯化鈣槽車追撞3車》
    https://udn.com/news/story/7320/3660687
    62.中時電子報《國1北向367.4公里4車連環撞 回堵逾1公里》
    https://www.chinatimes.com/realtimenews/20190312002774-260402?chdtv
    63.聯合新聞網《液態氨槽車西濱失控翻覆 消防全面警戒》
    https://udn.com/news/story/7320/3711945

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE