簡易檢索 / 詳目顯示

研究生: 陳德隆
Chen, Der-Long
論文名稱: 氧化鋅/雞蛋白混成材料非揮發性電阻式記憶體之研製
Investigation and fabrication of ZnO/Albumin based hybrid material Nonvolatile Resistive Memory
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 75
中文關鍵詞: 雞蛋白電阻式記憶體
外文關鍵詞: Albumin, RRAM, Resistive Memory
相關次數: 點閱:91下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文一共分為五個章節,第一章節介紹新穎的非揮發記憶體的種類及研究動機;第二章節中將對電阻式記憶體做一個簡單的介紹,包含了元件結構、元件應用、開關特性行為以及導電機制,第三章節採用了氧化鋅薄膜來製作電阻式記憶體,並且利用紫外線臭氧清洗處理藉以改善其特性,第四章節藉由雞蛋白作為絕緣層材料,並且混入氧化鋅奈米粒子藉此提升元件特性,最後章節為結論與未來採用可撓性基板製作的可行性。
    在實驗的第一部分以氧化鋅薄膜製作電阻式記憶體,其擁有雙極性的開關特性,在經過紫外線處理過後,元件的開關電流比提升至500倍,切換次數可達200次,並且其高及低阻態亦即資料維持時間可以分別達到104秒。而探討其導電機制發現在設置(Set)與重置(Reset)過程主要受到歐姆與蕭特基激發的導電機制所影響
    實驗的第二部分運用加水稀釋的雞蛋白溶液製作電阻式隨機存取記憶體,並且發現其擁有單極性的電阻開關特性,並發現嵌入氧化鋅-奈米粒子可提升雞蛋白的開關特性,經過改良後的元件,其開關電流比為100倍,並且一樣能維持200次的開關次數,且其高及低阻態可以分別維持103秒,而探討其導電機制我們發現在嵌入氧化鋅奈米粒子的元件中,其導電機制由空間電荷限制電流轉換至普爾-法蘭克的導電機制。
    *作者 **指導教授

    This thesis is divided into five chapters. In the first chapter, the motivation and introduction of the novel nonvolatile memory were described. The resistance random access memory device, including device structure, application, resistive switching behavior and conduction mechanisms were described in the second chapter. In the third chapter, the resistance memory device with ZnO thin film was manufactured with the UV-Ozone cleaner treatment, and the device characteristics was improved significantly. In the fourth chapter, we used chicken albumin/water mixture as insulator material to fabricate the resistive memory device, and found that with ZnO-nano particle (NP) embedded in the albumen film the device operation characteristics could be enhanced. And the final chapter is the conclusion and future work.
    The ZnO thin film was used to fabricate resistive memory device in first part, the device demonstrated bipolar switching characteristic. The on-off current ratio could be increased and improved to be 500 times by introducing additional UV-Ozone treatment, and the switching cycle can be up to 500 times, the retention time is about 104 seconds in both high resistance state (HRS) and low resistance state (LRS). According to the experiment result the conduction mechanism could be ascribed to the Ohmic and Schottky emission conduction mechanisms at set and reset processes, respectively.
    The chicken albumin was mixed with water and used as the insulator material to fabricate the resistive memory in second part, and the device demonstrated the unipolar switching characteristics. The operation characteristics of chicken albumin resistive memory were improved by embedding the ZnO-NP into the insulator layer, the on-off current ratio was increased to the 100 times, the switching cycle could be up to 200 times, and the retention time is about 103 seconds. The conduction mechanism of the albumen resistive memory with ZnO-NP switched from the space charge limited current (SCLC) to the Pool-Frenkel conduction mechanism according to the observed results.
    * Author **Advisor

    Chinese Abstract I English Abstract II Acknowledgements IV Contents VI Figure Captions X Table Captions XIV Chapter 1 Introduction 1 1.1 The Problem and Challenge of Tradition Flash Memory 1 1.2 Emerging Random Access Memory Technologies 2 1.2.1 Ferroelectric Random Access Memory (FeRAM) 3 1.2.2 Magnetoresistive Random Access Memory (MRAM) 3 1.2.3 Phase-Change Random Access Memory (PCRAM) 4 1.2.4 Resistive Random Access Memory (RRAM) 4 1.3 Motivation 5 Chapter 2 Physics of Resistive Random Access Memory (RRAM) 11 2.1 Transform Characteristic of Resistive Random Access Memory (RRAM) 11 2.2 Filamentary Mechanisms of Resistive Random Access Memory (RRAM) 13 2.2.1 Electrochemical Metallization 13 2.2.2 Valency Charge Switching 14 2.2.3 Unipolar Thermochemical Switching-Joule heating 14 2.3 Conduction mechanism of Resistive Random Access Memory (RRAM) 15 2.3.1 Ohmic Conduction 15 2.3.2 Schotty Emission Conduction 16 2.3.3 Poole-Frenkel Emission 16 2.3.4 Space Charge Limited Current (SCLC) 17 Chapter 3 Performance Enhancement of Pt/ZnO/Pt Resistive Random Access Memory (RRAM) with UV-Ozone Treatment 23 3.1 Material Introduction 23 3.2 UV-Ozone Treatment 24 3.3 To fabricate Pt/ZnO/Pt Resistive Random Access Memory 25 3.3.1 Experimental Details of ZnO Thin Film Memory 25 3.3.2 Electrical Characteristics of ZnO Thin Film Memory 26 3.3.3 Conduction Mechanism of ZnO Thin Film Memory 28 3.4 To Fabricate Pt/ZnO/Pt Resistive Random Access Memory (RRAM) with UV-Ozone Treatment 29 3.4.1 Experimental Details of ZnO Thin Film Memory with UV-Ozone Treatment 29 3.4.2 Electrical characteristics of ZnO Thin Film Memory with UV-Ozone Treatment 30 3.4.3 Conduction Mechanism of ZnO Thin Film Memory with UV-Ozone Treatment 32 3.5 Comparison with UV-Ozone and without UV-Ozone Treatment Characteristic 33 3.6 Summery 34 Chapter 4 Performance enhancement of Al/Albumin 46 /ITO resistive random access memory (RRAM) with ZnO-NP 46 4.1 Material Introduction 46 4.2 To Fabricate Al/Albumin/ITO Resistive Random Access Memory (RRAM) 47 4.2.1 Experimental Detail 47 4.2.2 Electrical Characteristics of Chicken Albumin Memory 48 4.2.3 Conduction Mechanisms of Chicken Albumin Memory 49 4.3 To fabricate Al/Albumin/ITO Resistive Random Access Memory (RRAM) with ZnO-NP 50 4.3.1 Experimental Detail of Chicken Albumin Thin Film Memory with ZnO-NP 50 4.3.2 Electrical Characteristics of Chicken Albumin Memory with ZnO-NP 51 4.3.3 Conduction Mechanisms of Chicken Albumin Memory with ZnO-NP 52 4.4 Comparison with ZnO-NP and without ZnO-NP Resistive Memory Characteristic 53 4.5 Summery 54 Chapter 5 Conclusion and Future work 67 5.1 Conclusion 67 5.2 Future Work 68 Reference 70

    [1] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, Jun 2008.
    [2] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, "Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications," Applied Physics Letters, vol. 87, pp. 122101-122103, Sep 19 2005.
    [3] D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, "Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer," Nanotechnology, vol. 20, pp. 195203-195209, May 13 2009.
    [4] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, et al., "TiO[sub 2] anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching," Applied Physics Letters, vol. 89, pp. 223509-223511, 2006.
    [5] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nat Nanotechnol, vol. 5, pp. 148-153, Feb 2010.
    [6] S. Lee, H. Kim, J. Park, and K. Yong, "Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films," Journal of Applied Physics, vol. 108, pp. 076101-076103, Oct 1 2010.
    [7] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of TiO[sub 2] thin films," Applied Physics Letters, vol. 91, pp. 012907-012909, 2007.
    [8] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, et al., "Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories," Applied Physics Letters, vol. 92, pp. 232112-232114, 2008.
    [9] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, et al., "Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention," Semiconductor Science and Technology, vol. 23, pp. 075019-075022, Jul 2008.
    [10] B. Cho, T. W. Kim, M. Choe, G. Wang, S. Song, and T. Lee, "Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles," Organic Electronics, vol. 10, pp. 473-477, May 2009.
    [11] P. K. Sarkar, S. Bhattacharjee, M. Prajapat, and A. Roy, "Incorporation of SnO2nanoparticles in PMMA for performance enhancement of a transparent organic resistive memory device," RSC Adv., vol. 5, pp. 105661-105667, 2015.
    [12] D. I. Son, C. H. You, W. T. Kim, J. H. Jung, and T. W. Kim, "Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites," Applied Physics Letters, vol. 94, pp. 132103-132105, Mar 30 2009.
    [13] P. C. Kao, C. C. Liu, and T. Y. Li, "Nonvolatile memory and opto-electrical characteristics of organic memory devices with zinc oxide nanoparticles embedded in the tris(8-hydroxyquinolinato)aluminum light-emitting layer," Organic Electronics, vol. 21, pp. 203-209, Jun 2015.
    [14] Simicon Korea 2015,Recent Progress in RRAM Materials and Devices by Sung Hyun Jo, Crossbar.
    [15] http://www.fujitsu.com/tw/products/devices/semiconductor/memory/fram/overview/.
    [16] "http://www.furuya-ma.com/products/sputtering-targets."
    [17] "http://www.pcper.com/news/General-Tech/Phase-Change-Memory-might-be-market-next-year."
    [18] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters, vol. 92, pp. 022110-022112, Jan 14 2008.
    [19] M. H. Tang, Z. Q. Zeng, J. C. Li, Z. P. Wang, X. L. Xu, G. Y. Wang, et al., "Resistive switching behavior of La-doped ZnO films for nonvolatile memory applications," Solid-State Electronics, vol. 63, pp. 100-104, Sep 2011.
    [20] A. Prakash, D. Jana, and S. Maikap, "TaOx-based resistive switching memories: prospective and challenges," Nanoscale Res Lett, vol. 8, pp. 418-434, 2013.
    [21] R. Waser, "Electrochemical and thermochemical memories," pp. 1-4, 2008.
    [22] S. Yu, G. Ximeng, and H. S. P. Wong, "On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization," pp. 413-416, 2011.
    [23] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, et al., "A unified physical model of switching behavior in oxide-based RRAM," pp. 100-101, 2008.
    [24] E. W. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, Sep 2015.
    [25] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review, vol. 97, pp. 1538-1544, 1955.
    [26] L. Heng-Tien, P. Zingway, and C. Yi-Jen, "Carrier Transport Mechanism in a Nanoparticle-Incorporated Organic Bistable Memory Device," IEEE Electron Device Letters, vol. 28, pp. 569-571, 2007.
    [27] http://www.stallinga.org/ElectricalCharacterization/2terminal/index.html.
    [28] Y. Han, K. Cho, and S. Kim, "Characteristics of multilevel bipolar resistive switching in Au/ZnO/ITO devices on glass," Microelectronic Engineering, vol. 88, pp. 2608-2610, Aug 2011.
    [29] J. R. Vig, "Uv Ozone Cleaning of Surfaces," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 3, pp. 1027-1034, 1985.
    [30] P. Urwyler, A. Pascual, B. Muller, and H. Schift, "Ultraviolet-ozone surface cleaning of injection-molded, thermoplastic microcantilevers," Journal of Applied Polymer Science, vol. 132, pp. 41922-41930, May 10 2015.
    [31] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, et al., "Improved Pt∕Au and W∕Pt∕Au Schottky contacts on n-type ZnO using ozone cleaning," Applied Physics Letters, vol. 84, pp. 5133-5135, 2004.
    [32] P. Cumpson and N. Sano, "Stability of reference masses V: UV/ozone treatment of gold and platinum surfaces," Metrologia, vol. 50, pp. 27-36, Feb 2013.
    [33] M. H. Tang, B. Jiang, Y. G. Xiao, Z. Q. Zeng, Z. P. Wang, J. C. Li, et al., "Top electrode-dependent resistance switching behaviors of ZnO thin films deposited on Pt/Ti/SiO2/Si substrate," Microelectronic Engineering, vol. 93, pp. 35-38, May 2012.
    [34] T. M. Tsai, K. C. Chang, T. C. Chang, Y. E. Syu, S. L. Chuang, G. W. Chang, et al., "Bipolar Resistive RAM Characteristics Induced by Nickel Incorporated Into Silicon Oxide Dielectrics for IC Applications," Ieee Electron Device Letters, vol. 33, pp. 1696-1698, Dec 2012.
    [35] B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, et al., "Highly uniform resistive switching characteristics of TiN/ZrO[sub 2]/Pt memory devices," Journal of Applied Physics, vol. 105, pp. 061630-061634, 2009.
    [36] "http://gipo.ntu.edu.tw/newsLetters/Chinese/2012/201206/201206-2-r.htm."
    [37] http://world.yam.com/post.php?id=5879.
    [38] "http://www.core77.com/posts/25436/What-Would-You-Do-with-the-Worlds-Thinnest-Circuitsb."
    [39] J. W. Chang, C. G. Wang, C. Y. Huang, T. D. Tsai, T. F. Guo, and T. C. Wen, "Chicken albumen dielectrics in organic field-effect transistors," Adv Mater, vol. 23, pp. 4077-4081, Sep 15 2011.
    [40] D. B. Jeon, J. Y. Bak, and S. M. Yoon, "Oxide Thin-Film Transistors Fabricated Using Biodegradable Gate Dielectric Layer of Chicken Albumen," Japanese Journal of Applied Physics, vol. 52, pp. 128002-128005, Dec 2013.
    [41] Y. C. Chen, H. C. Yu, C. Y. Huang, W. L. Chung, S. L. Wu, and Y. K. Su, "Nonvolatile bio-memristor fabricated with egg albumen film," Sci Rep, vol. 5, pp. 10022-10034, 2015.
    [42] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, et al., "Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory," Electrochemical and Solid State Letters, vol. 13, pp. H191-H193, 2010.
    [43] D. L. Xu, Y. Xiong, M. H. Tang, B. W. Zeng, and Y. G. Xiao, "Bipolar and unipolar resistive switching modes in Pt/Zn0.99Zr0.01O/Pt structure for multi-bit resistance random access memory," Applied Physics Letters, vol. 104, pp. 183501-183504, May 5 2014.
    [44] C. Ye, C. Zhan, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, et al., "Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon," Applied Physics Express, vol. 7, pp. 034101-034104, Mar 2014.
    [45] X. M. Chen, W. Hu, S. X. Wu, and D. H. Bao, "Complementary switching on TiN/MgZnO/ZnO/Pt bipolar memory devices for nanocrossbar arrays," Journal of Alloys and Compounds, vol. 615, pp. 566-568, Dec 5 2014.
    [46] J. Zhang, H. Yang, Q. L. Zhang, S. R. Dong, and J. K. Luo, "Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition," Applied Physics Letters, vol. 102, pp. 012113-012116, Jan 7 2013.
    [47] D. Y. Guo, Z. P. Wu, Y. H. An, P. G. Li, P. C. Wang, X. L. Chu, et al., "Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications," Applied Physics Letters, vol. 106, pp. 042105-042108, Jan 26 2015.
    [48] Y. Sharma, P. Misra, and R. S. Katiyar, "Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications," Journal of Applied Physics, vol. 116, pp. 084505-084509, Aug 28 2014.
    [49] Y. Sharma, P. Misra, S. P. Pavunny, and R. S. Katiyar, "Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film," Applied Physics Letters, vol. 104, pp. 073501-073505, Feb 17 2014.
    [50] C. Y. Liu, Y. R. Shih, and S. J. Huang, "Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature," Solid State Communications, vol. 159, pp. 13-17, Apr 2013.
    [51] S. Hyunjun, C. Dooho, L. Dongsoo, S. Sunae, L. Myong-Jae, Y. In-Kyeong, et al., "Resistance-switching Characteristics of polycrystalline Nb/sub 2/O/sub 5/ for nonvolatile memory application," IEEE Electron Device Letters, vol. 26, pp. 292-294, 2005.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE