| 研究生: |
徐逸庭 Hsu, Yi-Ting |
|---|---|
| 論文名稱: |
一貫作業煉鋼廠原料堆置場逸散性粒狀物之綜合排放係數及其對空氣品質之影響 Fugitive Particle Lumped Emission Factors of the Storage Pile at Integrated Steel Plants and its Impact on Air Quality |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 原料堆置場 、逸散性粒狀物 、排放係數 |
| 外文關鍵詞: | storage piles, fugitive particle, emission factor |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對一貫作業煉鋼廠原料堆置場排放係數進行量化,由於原料堆置、取用需求,原料堆置場大多為露天型式,排放係數並無標準量化方法,且易受到環境參數、作業活動等影響,又具有因地而異的特性,而目前國內少有對堆置場進行實場採樣量化排放係數之研究,多半參考國外文獻計算堆置場逸散性粉塵排放量,故本研究以暴露剖面方法量化國內一貫作業煉鋼廠原料堆置場排放係數。
為進行原料堆置場排放係數的量化與各物料來源分配,於2017至2018年間於國內鄰近台中港處一貫作業煉鋼廠原料堆置場進行上下風濃度剖面監測,使用開面式採樣器與旋風分離器固定於南側與北側擋風牆上進行粒狀物採樣,上下風各有三處採樣點,分別為料場中間及兩側,以量測粒狀物濃度於不同高度與不同剖面之垂直剖面分布,同時於料場東西兩側進行氣象監測,並於地面設置高量採樣器與PM2.5採樣器(PQ200),進行標準方法平行比對。採樣期間鋼鐵廠均維持正常作業,故採集之粒狀物濃度來源包含原料堆置場各作業行為:風蝕揚塵、取卸料揚塵、車行揚塵、輸送作業等。場內設有自動灑水、擋風牆等防治措施,也會以水車噴灑方式進行路面灑水防治,堆置物料種類主要為鋼鐵製程原料煤礦、鐵礦、石料及副產物焦炭、燒結礦。計算原料堆置場排放係數,並使用再捲揚腔室實驗建立原物料指紋資料,使排放係數得以分配至一貫作業煉鋼廠主要原料煤礦、鐵礦、石料,再使用鋼鐵廠提供之操作量、鄰近氣象站資料,計算出全年各季排放量,由ISC空氣品質模式模擬,研究其對空氣品質的影響。
根據原物料篩分析結果顯示,堆置場物料以>2 mm顆粒為主,再捲揚腔實驗結果也顯示,無論何種物料也都以>2.5 μm粗微粒為主,於現地光學法量測之結果,下風測站6~10 m處之微粒濃度較高,顯示原物料堆之逸散排放高度,且揚塵中主要為粒徑≥10 μm的顆粒,因此自原料堆置場排放出的逸散性粉塵易於快速沉降,物料之成份組成,煤礦主要為元素碳,鐵礦主要成份為鐵,石料主要成分為鎂,而排放係數於0.54 m/s~8.50 m/s風速範圍內,TSP排放係數為0.52~180 g/kt hr,PM2.5為0.10~4.10 g/kt hr,物料排放係數分配部分,TSP煤礦排放係數為1.21~671 g/kt hr,鐵礦約為0.230~49.0 g/kt hr,石料為0.0210~183 g/kt hr,PM2.5煤礦排放係數為0.109~5.80 g/kt hr,鐵礦為0.104~3.29 g/kt hr,石料為0.0203~1.47 g/kt hr。
原料堆置場對空氣品質之影響由於料堆排放高度僅15 m,故其TSP增量主要發生於料場周圍,最高季平均增量濃度發生於第四季料場周圍,約為103 μg/m3,並由於第一季與第四季盛行風向為北風,污染物主要向料場南側擴散,而第二季與第三季由於較顯著之海陸風現象與盛行風向轉為南風,污染物向原料堆置場西北側擴散。而鄰近原料堆置場之敏感受體點為龍港國小,該處TSP年平均增量濃度為2.56 μg/m3,第一季平均增量濃度為3.41 μg/m3,第二季平均增量濃度為1.39 μg/m3,第三季平均增量濃度為1.31 μg/m3,第四季為4.61 μg/m3,而其西北側方圓500 m內有較多住宅聚集,住宅區於第四季有較高的TSP季平均增量濃度,約介於5~15 μg/m3。
This study uses the exposure profile method to quantify the emissions factors from the raw material storage piles at Integrated Steel Plants in Taiwan from 2017 to 2018. In order to calculate the emission factors of coal, iron ore, and stone separately, this study established source profiles of raw materials. The emission rates were computed by using the formula established in this study, the wind speed data of Wuqi weather station and the operating capacity from records of plant. Finally, ISC air quality diffusion model is used to evaluate the impact on air quality.
The emission factor in the range of 0.54 m/s~8.50 m/s wind speed, the TSP emission factor is 0.52~180 g/kt-hr, PM2.5 is 0.10~4.10 g/kt-hr, TSPcoal is 1.21~671 g/kt-hr, TSPiron is 0.23~49 g/kt-hr, TSPstone is 0.021~183 g/kt-hr, PM2.5coal is 0.109~5.80 g/kt-hr, PM2.5iron is 0.104~3.29 g/kt-hr, PM2.5stone is 0.0203~1.47 g/kt-hr.
Since the emission height is only 15 m, the TSP increment mainly occurs around the storage piles. Because the north winds prevailed in the Q1 and Q4, the pollutants mainly spread to the south side, while the Q2 and Q3 turned to the south wind and the more significant sea-land breeze the TSP spreads to the northwest side. The sensitive acceptor site adjacent to the storage piles is Longgang Elementary School. The annual average incremental concentration of TSP is 2.56 μg/m3, the average incremental concentration was largest in the Q4 which is 4.61 μg/m3.
Bohn, R., Cuscino, T., & Cowherd, C. Fugitive emissions from integrated iron and steel plants. 1978.
Chepil, W. S. Influence of Moisture on Erodibility of Soil by Wind 1. Soil Science Society of America Journal, 20(2), 288-292. 1956.
Cowherd, C., Axetell, K., Guenther, C. M., & Jutze, G. A. Development of emission factors for fugitive dust sources. Air Pollution Technical Information Center, Environmental Protection Agency. 1974.
Cowherd, C., Bohn, R., & Cuscino, T. Iron and steel plant open source fugitive emission evaluation. 1979.
Chakraborty, M. K., Ahmad, M., Singh, R. S., Pal, D., Bandopadhyay, C., & Chaulya, S. K. Determination of the emission rate from various opencast mining operations. Environmental Modelling & Software, 17(5), 467-480. 2002.
Chang, C. T., Chang, Y. M., Lin, W. Y., & Wu, M. C. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan. Journal of the Air & Waste Management Association, 60(10), 1262-1268. 2010.
Cong, X. C., Du, H. B., Peng, S. T., & Dai, M. X. Field measurements of shelter efficacy for installed wind fences in the open coal yard. Journal of Wind Engineering and Industrial Aerodynamics, 117, 18-24. 2013.
Duan, Z. Y., Dong, Y. Y., Zheng, F. L., & Zhang, J. M. Numerical Simulation and Experimental Verification of Butterfly Porous Fences. In Key Engineering Materials (Vol. 501, pp. 413-417). Trans Tech Publications. 2012.
Environmental, P., & Towers, I. C. Technical guidance for control of industrial process fugitive particulate emissions. In EPA-450/3-77-010. US Environmental Protection Agency Research Triangle Park, NC. 1977.
Gillette, D. A., Blifford Jr, I. H., & Fenster, C. R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. Journal of Applied Meteorology, 11(6), 977-987. 1972.
Gillette, D. A. Fine particulate emissions due to wind erosion. Transactions of the ASAE, 20(5), 890-0897. 1977.
Ghose, M. K. Emission factors for the quantification of dust in Indian coal mines. 2004.
Iversen, J. D., & White, B. R. Saltation threshold on earth, mars and venus. Sedimentology, 29(1), 111-119. 1982.
Kalika, P. W., Kenson, R. E., & Bartlett, P. T. Development of Procedures for the Measurement of Fugitive Emissions. 1976.
Lee, S. J., Park, K. C., & Park, C. W. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements. Atmospheric Environment, 36(9), 1453-1463. 2002.
Muleski, G., Cowherd, C., & Englehart, P. Update of Fugitive Dust Emissions Factors in AP-42 Section 11.2. 1987.
Mueller, S. F., Mallard, J. W., Mao, Q., & Shaw, S. L. Emission factors for fugitive dust from bulldozers working on a coal pile. Journal of the Air & Waste Management Association, 65(1), 27-40. 2015.
Neulicht, R., & Shular, J. Emission factor documentation for AP-42. section 13.2. 2. Unpaved roads, 138. 1998.
Nickling, W. G., & Neuman, C. M. Aeolian sediment transport. In Geomorphology of desert environments (pp. 517-555). Springer, Dordrecht. 2009.
Open Dust Sources Around Iron and Steel Plants, Draft. Midwest Research Institute. Prepared for the U.S. Environmental Protection Agency, Industrial Environmental Research Laboratory under Contract No. 68-02-2120. Research Triangle Park, North Carolina. November 2. 1976.
Raupach, M. R., Woods, N., Dorr, G., Leys, J. F., & Cleugh, H. A. The entrapment of particles by windbreaks. Atmospheric environment, 35(20), 3373-3383. 2001.
Ravi, S., Zobeck, T. M., Over, T. M., Okin, G. S., & D'ODORICO, P. A. O. L. O. On the effect of moisture bonding forces in air‐dry soils on threshold friction velocity of wind erosion. Sedimentology, 53(3), 597-609. 2006.
Richardson, C., Rutherford, S., & Agranovski, I. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates. Journal of the Air & Waste Management Association, 68(6), 598-607. 2018.
Sanfélix, V., Escrig, A., López-Lilao, A., Celades, I., & Monfort, E. On the source inversion of fugitive surface layer releases. Part II. Complex sources. Atmospheric environment, 158, 27-35. 2017.
Thornthwaite, C. W. The climates of North America: according to a new classification. Geographical review, 21(4), 633-655. 1931.
Topić, N., & Žitnik, M. Fugitive Dust Emissions from a Coal-, Iron Ore-and Hydrated Alumina Stockpile. In Air Pollution-Monitoring, Modelling and Health. IntechOpen. 2012.
U.S. EPA, AP 42. Fifth Edition, vol. I, Chapter 13, Miscellaneous Sources. 1995.
Woodruff, N. P., & Siddoway, F. H. A Wind Erosion Equation 1. Soil Science Society of America Journal, 29(5), 602-608. 1965.
Watson, J. G., Robinson, N. F., Chow, J. C., Henry, R. C., Kim, B. M., Pace, T. G., ... & Nguyen, Q. The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environmental Software, 5(1), 38-49. 1990.
Zhang, N., Kang, J. H., & Lee, S. J. Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles. Geomorphology, 120(3-4), 224-232. 2010.
校內:2024-07-15公開